如图,抛物线的顶点为M,抛物线交x轴于A、B两点,交y轴正半轴于D点,以AB为直径作圆,圆心为C,定点E的坐标为(-3,0),连接ED(m>0)。(1)写

如图,抛物线的顶点为M,抛物线交x轴于A、B两点,交y轴正半轴于D点,以AB为直径作圆,圆心为C,定点E的坐标为(-3,0),连接ED(m>0)。(1)写

题型:山东省中考真题难度:来源:
如图,抛物线的顶点为M,抛物线交x轴于A、B两点,交y轴正半轴于D点,以AB为直径作圆,圆心为C,定点E的坐标为(-3,0),连接ED(m>0)。
(1)写出A、B、D三点的坐标;
(2)当m为何值时,M点在直线ED上,此时直线ED与圆的位置关系是怎样的?
(3)当m变化时,用m表示△AED的面积S,并在给出的直角坐标系中画出S关于m的示意图。
答案
解:(1)A(-m,0),B(3,0),D(0,)。 (2)设直线ED的解析式为,
将E(-3,0),D(0,)代入得:
,解得
∴直线ED的解析式为
化为顶点式:
∴顶点M的坐标为(),
代入得:m2=m,
∵m>0,
∴m=1,
∴当m=1时,M点在直线DE上,
连接CD,C为AB中点,此时,C点坐标为(1,0),D点坐标为(0,),
∴OD=,OC=1,
∴CD=
又∵OE=3,
∴DE2=OD2+OE2=
又EC2=16,CD2=4,
∴CD2+DE2=EC2
∴∠FDC=90°,
由CD=2知,D点在圆上,
∴直线ED与⊙C相切; (3)当0<m<3时,S△AED=AE·OD=
当m>3时,S△AED=AE·OD=
S关于m的示意图如右:
举一反三
如图,在平面直角坐标系中,四边形OABC是平行四边形,直线l经过O、C两点,点A的坐标为(8,o),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C-B相交于点M。当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0),△MPQ的面积为S。
(1)点C的坐标为___________,直线的解析式为____________;
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;
(3) 试求题(2)中当t为何值时,S的值最大,并求出S的最大值;
(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N。试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值。
题型:山西省中考真题难度:| 查看答案
如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(-1,0)。
(1)求二次函数的关系式;
(2)在抛物线上有一点A,其横坐标为-2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足-2<xB,当△AOB的面积最大时,求出此时直线l的关系式;
(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等,若存在,求出点C的横坐标;若不存在说明理由。
题型:四川省中考真题难度:| 查看答案
如图,已知二次函数y=ax2+2x+c(a>0)图象的顶点M在反比例函数y=上,且与x轴交于AB两点。
(1)若二次函数的对称轴为x=-,试求a,c的值;
(2)在(1)的条件下求AB的长;
(3)若二次函数的对称轴与x轴的交点为N,当NO+MN取最小值时,试求二次函数的解析式。
题型:四川省中考真题难度:| 查看答案
已知抛物线的顶点是C(0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点。
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD=4,求a的值。
题型:四川省中考真题难度:| 查看答案
已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.
(1)如图(1),若∠AOB=60°,求抛物线C的解析式;
(2)如图(2),若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;
(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得的点P的坐标。
(1)                                         (2)
题型:四川省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.