已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点. (1)如图(1),若∠AOB=60°,求抛物线

已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点. (1)如图(1),若∠AOB=60°,求抛物线

题型:四川省中考真题难度:来源:
已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.
(1)如图(1),若∠AOB=60°,求抛物线C的解析式;
(2)如图(2),若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;
(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得的点P的坐标。
(1)                                         (2)
答案
解:(1)连接AB,
∵A点是抛物线C的顶点,且C交x轴于O、B,
∴AO=AB,
又∵∠AOB=60°,
∴△ABO是等边三角形,
过A作AD⊥x轴于D,
在Rt△OAD中,易求出OD=2,AD=
∴ 顶点A的坐标为(2,),
设抛物线C的解析式为(a≠0),
将O(0,0)的坐标代入,可求a=
∴抛物线C的解析式为
(2)过A作AE⊥OB于E,
∵抛物线C:
过原点和B(4,0),顶点为A,
∴OE=OB=2,
又∵直线OA的解析式为y=x,
∴AE=OE=2,
∴点A的坐标为(2,2),
将A、B、O的坐标代入中,易求a=-
∴抛物线C的解析式为
又∵抛物线C、C′关于原点对称,
∴抛物线C′的解析式为
(3)作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),
由前可知,抛物线C′的顶点为A′(-2,-2),
故A′B的中点M的坐标为(1,-1),
作MH⊥x轴于H,易证△MHN∽△BHM,
,即

即N点的坐标为(,0),
∵直线l过点M(1,-1)、N(,0),
∴直线l的解析式为
得,
∴在抛物线C上存在两点使得
其坐标分别为 P1,),P2),
得,
∴在抛物线C′上也存在两点使得,其坐标分别为P3(-5+,17-3),P4(-5-,17+3)。
举一反三
注意:为了使同学们更好她解答本题,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一班要求进行解答即可。
某商品现在的售价为每件35元,每天可卖出50件,市场调查反映:如果调整价格,每降价1元,每天可多卖出2件,请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元,每天的销售额为y元。
(I)分析:根据问题中的数量关系,用含x的式子填表;
(Ⅱ)由以上分析,用含x的式子表示y,并求出问题的解。
题型:天津中考真题难度:| 查看答案
已知抛物线C1,点F(1,1)。
(Ⅰ)求抛物线C1的顶点坐标;
(Ⅱ)①若抛物线C1与y轴的交点为A,连接AF,并延长交抛物线C1于点B,求证:
②抛物线C1上任意一点P(xp,yp)(0<xp<1),连接PF,并延长交抛物线C1于点Q(xq,yq),试判断是否成立?请说明理由;
(Ⅲ)将抛物线C1作适当的平移,得抛物线C2,若2<x≤m时,y2≤x,恒成立,求m的最大值。
题型:天津中考真题难度:| 查看答案
如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°,动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动。
(1)求AB的长;
(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;
(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由。
题型:新疆自治区中考真题难度:| 查看答案
如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动。
(1)求AC、BC的长;
(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;
(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;
(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由。
题型:云南省中考真题难度:| 查看答案
一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=-铅球运行路线如图。
(1)求铅球推出的水平距离;
(2)通过计算说明铅球行进高度能否达到4m。
题型:云南省中考真题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.