已知二次函数的图象经过 (-1,3)、(1,3)、(2,6)三点,(1)求二次函数的解析式;(2)写出二次函数图像的对称轴和顶点坐标。

已知二次函数的图象经过 (-1,3)、(1,3)、(2,6)三点,(1)求二次函数的解析式;(2)写出二次函数图像的对称轴和顶点坐标。

题型:安徽省期末题难度:来源:
已知二次函数的图象经过 (-1,3)、(1,3)、(2,6)三点,
(1)求二次函数的解析式;
(2)写出二次函数图像的对称轴和顶点坐标。
答案
(1)设二次函数的解析式为y=ax2+bx+c
把A(-1,3)、B(1,3)、C(2,6)各点代入上式得
解得
∴解析式为y=x2+2;
(2)对称轴为直线x=0(或y轴);
顶点坐标为(0,2)
举一反三
已知抛物线
(Ⅰ)若,求该抛物线与x轴公共点的坐标;
(Ⅱ)若,且当时,抛物线与x轴有且只有一个公共点,求c的取值范围;
(Ⅲ)若,且时,对应的时,对应的,试判断当时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
题型:专项题难度:| 查看答案
在直角坐标平面内,二次函数图象的顶点为,且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象沿x轴向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.
题型:安徽省期末题难度:| 查看答案
有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m,跨度为 10m,如图所示,把它的图形放在直角坐标系中。
(1)求这条抛物线所对应的函数关系式。
(2)如图,在对称轴右边1m 处,桥洞离水面的高是多少?

题型:安徽省期末题难度:| 查看答案
研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售x吨时,,请你用含x的代数式表示甲地当年的年销售额,并求年利润(万元)与x之间的函数关系式;
(2)成果表明,在乙地生产并销售x吨时,(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线的顶点坐标是
题型:专项题难度:| 查看答案
如图,抛物线y=-x2+5x+n经过点A(1,0),与y轴的交点为B.
(1)求抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标。
题型:安徽省期末题难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.