已知抛物线y=x2+(2a-1)x+a2+3a+174与x轴交于点A(x1,0),B(x2,0).(1)求实数a的取值范围;(2)令S=x12+x22,求S的取

已知抛物线y=x2+(2a-1)x+a2+3a+174与x轴交于点A(x1,0),B(x2,0).(1)求实数a的取值范围;(2)令S=x12+x22,求S的取

题型:不详难度:来源:
已知抛物线y=x2+(2a-1)x+a2+3a+
17
4
与x轴交于点A(x1,0),B(x2,0).
(1)求实数a的取值范围;
(2)令S=x12+x22,求S的取值范围.
答案
(1)∵抛物线y=x2+(2a-1)x+a2+3a+
17
4
与x轴交于点A(x1,0),B(x2,0).
∴b2-4ac>0,
即(2a-1)2-4(a2+3a+
17
4
)>0,
解得a<-1.

(2)设方程x2+(2a-1)x+a2+3a+
17
4
=0的两根为x1,x2
∴x1+x2=1-2a,x1•x2=a2+3a+
17
4

∵x12+x22=(x1+x22-2x1•x2=(1-2a)2-2(a2+3a+
17
4
)=2(a-
5
2
2-20,
∵a<-1,
∴(a-
5
2
2
49
4

∴2(a-
5
2
2-20>
9
2

即S>
9
2
举一反三
已知二次三项式ax2+bx+c(a>0)
(1)当c<0时,求函数y=-2|ax2+bx+c|-1的最大值;
(2)若无论k为何实数,直线y=k(x-1)-
k2
4
与抛物线y=ax2+bx+c有且只有一个公共点,求a+b+c的值.
题型:不详难度:| 查看答案
已知:二次函数y=x2-mx-4.
(1)求证:该函数的图象一定与x轴有两个不同的交点;
(2)设该函数的图象与x轴的交点坐标为(x1,0)、(x2,0),且
1
x1
+
1
x2
=-1
,求m的值,并求出该函数图象的顶点坐标.
题型:淮安难度:| 查看答案
设二次函数y=mx2-(2m-1)x+m-2(m>0)
(1)求证:它的图象与x轴必有两个交点.
(2)设图象与x轴的两个交点为A(x1,0),B(x2,0),且(x1-3)(x2-3)=5m,求m的值.
题型:南汇区二模难度:| 查看答案
已知函数y=2x2-4mx+m2的图象与x轴交于A、B两点,顶点为C,若△ABC的面积为4


2
,那么m=______.
题型:不详难度:| 查看答案
已知二次函数y=x2+qx+p的图象与x轴交于不同的两点A、B,顶点为C,且△ABC的面积S≤1.
(1)求q2-4p的取值范围;
(2)若p,q分别为一个两位数的十位与个位数字,求出所有这样的两位数
.
pq
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.