阅读理课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决

阅读理课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决

题型:绍兴模拟难度:来源:
阅读理
课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

魔方格
答案
①延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),

魔方格

∴CF=BG,DF=DG,
∵DE⊥DF,
∴EF=EG.
在△BEG中,BE+BG>EG,即BE+CF>EF.(4分)
②若∠A=90°,则∠EBC+∠FCB=90°,
由①知∠FCD=∠DBG,EF=EG,
∴∠EBC+∠DBG=90°,即∠EBG=90°,
∴在Rt△EBG中,BE2+BG2=EG2
∴BE2+CF2=EF2;(3分)

(2)将△DCF绕点D逆时针旋转120°得到△DBG.

魔方格

∵∠C+∠ABD=180°,∠4=∠C,
∴∠4+∠ABD=180°,
∴点E、B、G在同一直线上.
∵∠3=∠1,∠BDC=120°,∠EDF=60°,
∴∠1+∠2=60°,故∠2+∠3=60°,即∠EDG=60°
∴∠EDF=∠EDG=60°,
∵DE=DE,DF=DG,
∴△DEG≌△DEF,
∴EF=EG=BE+BG,即EF=BE+CF.(4分)
举一反三
设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果b=n(n是自然数),试问这样的三角形有多少个?
题型:不详难度:| 查看答案
在锐角三角形ABC中,a=1,b=3,那么第三边c的变化范围是(  )
A.2<c<4B.2<c<3C.2<c<


10
D.2


2
<c<


10
题型:不详难度:| 查看答案
如图,已知△ABC中,AB>AC,AD是中线,AE是角平分线.
求证:(1)2AD<AB+AC;
(2)∠BAD>∠DAC;
(3)AE<AD.魔方格
题型:不详难度:| 查看答案
如图,已知△ABC中,BC大于其它两边,D、E分别在AB、AC上,连接DE.
求证:DE<BC.魔方格
题型:不详难度:| 查看答案
如图,已知在凸四边形ABCD中,对角线AC、BD相交于O,且AC⊥BD,OA>OC,OB>OD.
求证:BC+AD>AB+CD.魔方格
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.