已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点
题型:期末题难度:来源:
已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题: (1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: _________ ; (2)仔细观察,在图2中“8字形”的个数: _________ 个; (3)在图2中,若∠D=40°,∠B=36°,试求∠P的度数; |
|
答案
解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC(对顶角相等),∴∠A+∠D=∠C+∠B; (2)①线段AB、CD相交于点O,形成“8字形”; ②线段AN、CM相交于点O,形成“8字形”; ③线段AB、CP相交于点N,形成“8字形”; ④线段AB、CM相交于点O,形成“8字形”; ⑤线段AP、CD相交于点M,形成“8字形”; ⑥线段AN、CD相交于点O,形成“8字形”; 故“8字形”共有6个; (3)∠DAP+∠D=∠P+∠DCP,① ∠PCB+∠B=∠PAB+∠P,② ∵∠DAB和∠BCD的平分线AP和CP相交于点P, ∴∠DAP=∠PAB,∠DCP=∠PCB, 由①+②得: ∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P, 即2∠P=∠D+∠B, 又∠D=40°,∠B=36°, ∴2∠P=40°+36°=76°, ∴∠P=38°. |
举一反三
如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=( ). |
|
如图,A点在B处的北偏东40°方向,C点在B处的北偏东85°方向,A点在C处的北偏西45°方向,求∠BAC及∠BCA的度数. |
|
如图,BO、CO分别平分∠ABC和∠ACB, (1)若∠A=60度,求∠O? (2)若∠A=100°,120°,∠O又是多少? (3)由(1)、(2)你发现了什么规律?当∠A的度数发生变化后,你的结论仍成立吗?(提示:三角形的内角和等于180°) |
|
已知△ABC中,∠A=50°,将∠A向三角形内折叠,如图所示,那么∠1+∠2= |
|
[ ] |
A.130° B.50° C.100° D.150° |
如图,已知∠ACD=135°,∠DFA=132°,∠A=32°,求∠D的度数。 |
|
最新试题
热门考点