我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1,在四边形ABCD中,取对角线BD的中点O,连结OA、OC. 显然,折

我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1,在四边形ABCD中,取对角线BD的中点O,连结OA、OC. 显然,折

题型:不详难度:来源:
我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图1,在四边形ABCD中,取对角线BD的中点O,连结OAOC. 显然,折线AOC能平分四边形ABCD的面积,再过点OOEACCDE,则直线AE即为一条“好线”.

(1)试说明直线AE是“好线”的理由;
(2)如图2,AE为一条“好线”,FAD边上的一点,请作出经过F点的“好线”,只需对画图步骤作适当说明(不需要说明“好线”的理由).
答案
(1)∵AO是△ABD的中线,∴AO平分△ABD的面积,
同理,CO平分△CBD的面积,于是,折线AOC平分四边形ABCD的面积.
若记四边形ABCD的面积为S,有S四边形OABCS.
OEAC,∴SOACSEAC……………………………………………… (1分)
S四边形EABCSEACSABCSOACSABCS四边形OABCS……………(2分)
∴直线AE是四边形ABCD的一条好线. ……………………………………(3分)
(2)连结EF,过点AEF的平行线,交CD于点P,作直线PF
则直线PF即为所要求作的好线.……………………………………(5分)

解析
(1)设AE与OC的交点是F.要说明直线AE是“好线”,根据已知条件中的折线AOC能平分四边形ABCD的面积,只需说明三角形AOF的面积等于三角形CEF的面积.则根据两条平行线间的距离相等,结合三角形的面积个数可以证明三角形AOE的面积等于三角形COE的面积,再根据等式的性质即可证明;
(2)根据两条平行线间的距离相等,只需借助平行线即可作出过点F的“好线”.
举一反三
如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积    ▲   
题型:不详难度:| 查看答案
如图,四边形ABCD中,满足        关系时AB//CD,(只要写出一个你认为成立的条件)。
题型:不详难度:| 查看答案
如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积。
题型:不详难度:| 查看答案
如图,在正方形ABCD中,AB=1,AC是以点B为圆心,AB长为半径的圆的一条弧,点E是边AD上的任意一点(点E与A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点
小题1:当∠DEF=时,试说明点G为线段EF的中点;
小题2:设AE=,FC=,用含有的代数式来表示,并写出的取值范围
小题3:如果把△DEF沿直线EF对折后得△,如图2,当 时,讨论△与△是否相似,如果相似,请加以证明;如果不相似,只要写出结论,不要求写出理由.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,有一个菱形BFDE(点E、F分别在线段AB、CD上),记它们的面积分别为. 现给出下列命题:

①若,则;②若,则DF=2AD.
那么,下面判断正确的是(   )
A.①是真命题,②是真命题        B.①是真命题,②是假命题
C.①是假命题,②是真命题             D.①假真命题,②假真命题
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.