(2011•南充)如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE

(2011•南充)如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE

题型:不详难度:来源:
(2011•南充)如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是(  )
A.1个B.2个
C.3个D.4个

答案
D
解析
∵△ABC和△CDE均为等腰直角三角形,
∴AB=BC,CD=DE,
∴∠BAC=∠BCA=∠DCE=∠DEC=45°,
∴∠ACE=90°;
∵△ABC∽△CDE
==
①∴tan∠AEC=
∴tan∠AEC=;故本选项正确;
②∵S△ABC=a2,S△CDE=b2,S梯形ABDE=(a+b)2
∴S△ACE=S梯形ABDE﹣S△ABC﹣S△CDE=ab,
S△ABC+S△CDE=(a2+b2)≥ab(a=b时取等号),
∴S△ABC+S△CDE≥S△ACE;故本选项正确;
④过点M作MN垂直于BD,垂足为N.

∵点M是AE的中点,
则MN为梯形中位线,
∴N为中点,
∴△BMD为等腰三角形,
∴BM=DM;故本选项正确;
③又MN=(AB+ED)=(BC+CD),
∴∠BMD=90°
即BM⊥DM;故本选项正确.
故选D.
举一反三
如图,等腰梯形ABCD中,AD∥BC,点E,F在BC上,且BE=FC,连接DE,AF.求证:DE=AF.
题型:不详难度:| 查看答案
(2011•南充)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.
(1)求证:△ABE∽△DFE
(2)若sin∠DFE=,求tan∠EBC的值.
题型:不详难度:| 查看答案
如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是(■).
A.∠HGF=∠GHEB.∠GHE=∠HEF
C.∠HEF=∠EFGD.∠HGF=∠HEF

题型:不详难度:| 查看答案
如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.
正确的有(  )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
如图,□ABCD中,对角形AC,BD相交于点O,添加一个条件,能使□ABCD成为菱形.你添加的条件是          (不再添加辅助线和字母)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.