(1)证明:∵四边形ABCD是正方形,BF⊥AG,DE⊥AG, ∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°, ∴∠BAF=∠ADE, ∴△ABF≌△DAE, ∴BF=AE,AF=DE, ∴DE-BF=AF-AE=EF.
(2)EF=2FG, 理由如下: ∵AB⊥BC,BF⊥AG,AB=2BG, ∵∠BAG=∠GBF, ∴△ABG∽△BFG, 同理可得,△AFB∽△BFG∽△ABG, ∴===2, ∴AF=2BF,BF=2FG, 由(1)知,AE=BF, ∴EF=AF-AE=AF-BF=BF=2FG.
(3)如图,DE+BF=EF. |