探究:如图①,过点A作AF⊥CB,交CB的延长线于点F, ∵AE⊥CD,∠BCD=90°, ∴四边形AFCE为矩形, ∴∠FAE=90°, ∴∠FAB+∠BAE=90°, ∵∠EAD+∠BAE=90°, ∴∠FAB=∠EAD, ∵在△AFB和△AED中,
| ∠FAB=∠EAD | ∠F=∠AED=90° | AB=AD |
| | ,
∴△AFB≌△AED(AAS), ∴AF=AE, ∴四边形AFCE为正方形, ∴S四边形ABCD=S正方形AFCE=AE2=102=100;
应用:如图,过点A作AF⊥CD交CD的延长线于F,连接AC, 则∠ADF+∠ADC=180°, ∵∠ABC+∠ADC=180°, ∴∠ABC=∠ADF, ∵在△ABE和△ADF中,
| ∠ABC=∠ADF | ∠AEB=∠F=90° | AB=AD |
| | , ∴△ABE≌△ADF(AAS), ∴AF=AE=19, ∴S四边形ABCD=S△ABC+S△ACD =BC?AE+CD?AF =×10×19+×6×19 =95+57 =152. 故答案为:152. |