在△ABC中,AB=4,如图(1)所示,DE∥BC,DE把ABC分成面积相等的两部分,即SⅠ=SⅡ,求AD的长.如图(2)所示,DE∥FG∥BC,DE、FG把△

在△ABC中,AB=4,如图(1)所示,DE∥BC,DE把ABC分成面积相等的两部分,即SⅠ=SⅡ,求AD的长.如图(2)所示,DE∥FG∥BC,DE、FG把△

题型:不详难度:来源:
在△ABC中,AB=4,如图(1)所示,DE∥BC,DE把ABC分成面积相等的两部分,即S=S,求AD的长.
如图(2)所示,DE∥FG∥BC,DE、FG把△ABC分成面积相等的三部分,即S=S=S,求AD的长;
如图(3)所示,DE∥FG∥HK∥…∥BC,DE、FG、HK、…把△ABC分成面积相等的n部分,S=S=S=…,请直接写出AD的长.
 
答案
(1)    (2)     (3)
解析

试题分析:(1)∵S=S
=
∵DE∥BC,∴△ADE∽△ABC,

∴AD==
(2)∵S=S=S
=
∵DE∥BC,∴△ADE∽△ABC,

AD==
(3)由(1)(2)知,AD=
点评:本题考查了平行线分线段成比例定理及相似三角形的性质.
举一反三
我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,小明发现△A∽△B,其相似比为 _________ .在图1的基础上继续复制下去得到△C,若△C的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C中含有 _________ 个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是 _________ 
(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.
题型:不详难度:| 查看答案
如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.
(1)求证:△COM∽△CBA;    
(2)求线段OM的长度.
题型:不详难度:| 查看答案
△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.

(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
题型:不详难度:| 查看答案
如图,四边形ABCD与四边形ACED都是平行四边形,R是DE的中点,BR交AC、CD于点P、Q.若AD=,AB=AC=2
求:BP、PQ的长.
题型:不详难度:| 查看答案
已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.