(本小题满分12分)如图, 内接于,的平分线与交于点,与交于点,延长,与的延长线交于点,连接是的中点,连结.(1)判断与的位置关系,写出你的结论并证明;(2)求

(本小题满分12分)如图, 内接于,的平分线与交于点,与交于点,延长,与的延长线交于点,连接是的中点,连结.(1)判断与的位置关系,写出你的结论并证明;(2)求

题型:不详难度:来源:
(本小题满分12分)如图, 内接于的平分线交于点,与交于点,延长,与的延长线交于点,连接的中点,连结

(1)判断的位置关系,写出你的结论并证明;
(2)求证:
(3)若,求的面积.
答案
(1)猜想:
证明:如图,连结OCOD
GCD的中点,
∴由等腰三角形的性质,有
(2)证明:∵AB是⊙O的直径,∴∠ACB=90°.
而∠CAE=∠CBF(同弧所对的圆周角相等).
在Rt△ACE和Rt△BCF中,
∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF
∴Rt△ACE≌Rt△BCF (ASA)
. 
(3)解:如图,过点OBD的垂线,垂足为H.则HBD的中点.
OHAD,即AD=2OH
又∠CAD=∠BADCD=BD,∴OH=OG
在Rt△BDE和Rt△ADB中,
∵∠DBE=∠DAC=∠BAD
∴Rt△BDE∽Rt△ADB
,即

,∴
                  … ①
,则,AB=
AD是∠BAC的平分线,

在Rt△ABD和Rt△AFD中,
∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD
∴Rt△ABD≌Rt△AFD(ASA).
AF=AB=BD=FD
CF=AF-AC=
在Rt△BCF中,由勾股定理,得
     …②  
由①、②,得
.解得(舍去).

∴⊙O的半径长为
 
解析

举一反三
(满分l2分)小林想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如图,小林边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小林落在墙上的影子高度CD="1.2" m,CE="0.8" m,CA="30" m(点A,E,C在同一直线上).已知小林的身高EF是1.7 m,请你帮小林求出楼高AB.(结果精确到0.1 m)
题型:不详难度:| 查看答案
(满分l4分)如图已知直线l1:y=x+与直线l2:y=2x+16相交于点C,l1,l2分别交x轴于A,B两点.矩形DEFG的顶点D,E分别在直线l1,l2上,顶点F,G都在X轴上,且点G与点B重合.
(1)求△ABC的面积;
(2)求矩形DEFG的边DE与EF的长;
(3)若此时矩形DEFG,沿x轴的反方向以每秒l个单位长度的速度平移,设移动时间为t 5(0≤t≤12),矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.
题型:不详难度:| 查看答案
在△ABC中,若D,E分别是边AB,AC上的点,且DE∥BC,AD=1,DB=2,则△ADE与△ABC的面积比为__________.
题型:不详难度:| 查看答案
(满分l4分)如图,点P是双曲线y=(k1<0,x<0)上一动点,过点P作x轴,y轴的垂线,分别交x轴,y轴于A,B两点,交双曲线y= (0<k2<︱k1︱)于E,F两点.
(1)图①中,四边形PEOF 的面积S1=__________(用含k1,k2的式子表示);
(2)图②中,设点P坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,S2是否有最小值?若有,求出其最小值;若没有,请说明理由
题型:不详难度:| 查看答案
如图,已知EF//BC,且AE∶BE=1∶2,若△AEF的面积为4,
则△ABC的面积为________________.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.