如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC△DEF,还需要的条件可以是 ;
题型:不详难度:来源:
如图,在△ABC和△DEF中,已知:AC=DF,,BC=EF,要使△ABC△DEF,还需要的条件可以是 ;(只填写一个条件)
|
答案
∠ACB=∠F. 答案不唯一 |
解析
试题分析:本题要判定△ABC≌△DEF,有AC=DF,BC=EF,可以加∠ACB=∠F,就可以用SAS判定△ABC≌△DEF.(或AB=DE。答案不唯一) 试题解析:由分析得:∠ACB=∠F. 考点: 全等三角形的判定. |
举一反三
△ABC中,AB=BC,∠A=40°,点D为AC边上任意一点(不与点A、C重合),当△BCD为等腰三角形时,∠ABD的度数是 ;
|
如图,∠A=∠D=90°,AC=BD, (1)求证:AB=CD (2)请判断△OBC的形状,并说明理由。
|
情境·观察: 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△,如图1所示,将△的顶点与点A重合,并绕点A按逆时针方向旋转,使点D,A(),B在同一条直线上,如图2所示,观察图2可知:旋转角= ° ,与BC相等的线段是 。
问题·探究: 如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰直角△ABE和等腰直角△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q,试探究EP与FQ之间的数量关系,并证明你的结论。
关系·拓展: 如图4,已知正方形ABCD,P为边BC上任意一点,连结AP,把AP绕点P顺时针方向旋转90°,点A对应点为点,连接,求的度数。 |
下列条件能判断两个三角形全等的是( ) ①两角及一边对应相等; ②两边及其夹角对应相等; ③两边及一边所对的角对应相等; ④两角及其夹边对应相等。 |
在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 度,∠C= 度. |
最新试题
热门考点