如图,∠MON=90°,AP平分∠MAB,BP平分∠ABN.(1)求∠P的度数;(2)若∠MON=80°,其余条件不变,求∠P的度数;(3)经过(1)、(2)的

如图,∠MON=90°,AP平分∠MAB,BP平分∠ABN.(1)求∠P的度数;(2)若∠MON=80°,其余条件不变,求∠P的度数;(3)经过(1)、(2)的

题型:不详难度:来源:
如图,∠MON=90°,AP平分∠MAB,BP平分∠ABN.

(1)求∠P的度数;
(2)若∠MON=80°,其余条件不变,求∠P的度数;
(3)经过(1)、(2)的计算,猜想并证明∠MON与∠P的关系.
答案
(1)45°(2)50°(3)∠MON+2∠P=180°
解析

试题分析:(1)利用外角性质,求得∠BAM+∠ABN=270°;由AP平分∠MAB,BP平分∠ABN可得∠BAP+∠ABP的度数,再根据三角形内角和定理求解即可;
(2)与问题(1)的思路相同;
(3)利用外角性质,求得∠BAM+∠ABN=∠MON+∠ABO+∠MON+∠BAO=(∠MON+∠ABO+∠BAO)+∠MON=180°+∠MON;由AP平分∠MAB,BP平分∠ABN.求∠BAP+∠ABP,最后根据三角形内角和定理即可求得所求的度数.
(1)∵∠BAM=∠AOB+∠ABO,∠ABN=∠AOB+∠BAO
∴∠BAM+∠ABN="∠AOB+∠ABO+∠AOB+∠BAO=180°+" 90°=270°
∵AP平分∠MAB,BP平分∠ABN
∴∠BAP=∠BAM,∠ABP=∠ABN
∴∠BAP+∠ABP=(∠BAM+∠ABN)=135°
在△ABP中,∠BAP+∠ABP+∠P=180°
∴∠P="180°-" 135°=45°;
(2)∵∠BAM=∠AOB+∠ABO,∠ABN=∠AOB+∠BAO
∴∠BAM+∠ABN="∠AOB+∠ABO+∠AOB+∠BAO=180°+" 80°=260°
∵AP平分∠MAB,BP平分∠ABN
∴∠BAP=∠BAM,∠ABP=∠ABN
∴∠BAP+∠ABP=(∠BAM+∠ABN)=130°
在△ABP中,∠BAP+∠ABP+∠P=180°
∴∠P="180°-" 130°=50°;
(3)∠MON+2∠P=180°
∵∠BAM=∠MON+∠ABO,∠ABN=∠MON+∠BAO
∴∠BAM+∠ABN="∠MON+∠ABO+∠MON+∠BAO" ="180°+∠MON"
∵AP平分∠MAB,BP平分∠ABN
∴∠BAP=∠BAM,∠ABP=∠ABN
∴∠BAP+∠ABP=(∠BAM+∠ABN)=(180°+∠MON)
在△ABP中,∠BAP+∠ABP+∠P=180°,(180°+∠MON)+∠P=180°  
∴∠MON+2∠P=180°.
点评:解题的关键是熟练掌握三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和.
举一反三
若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是(   )
A.P是∠A与∠B两角平分线的交点    
B.P为AC、AB两边上的高的交点
C.P为∠A的角平分线与AB的垂直平分线的交点
D.P为∠A的角平分线与AB边上的中线的交点
题型:不详难度:| 查看答案
如图所示:∠A=50°,∠B=30°,∠BDC=110°, 则∠C=______°;
题型:不详难度:| 查看答案
直角三角形的斜边长是, 一条直角边的长是, 那么当另一条直角边达到最大时, 这个直角三角形的周长的范围大致在  (   )
A.3与4之间B.4与5之间C.5与6之间D.6与7之间

题型:不详难度:| 查看答案
已知△的两条高线的长分别为5和20, 若第三条高线的长也是整数,则第三条高线长的最大值为 _______ .
题型:不详难度:| 查看答案
如图是用相同长度的小棒摆成的一组有规律的图案,图案①需要10根小棒,……,按此规律摆下去,第n个图案需要小棒(     )根.
A.B.C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.