如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3

如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3

题型:不详难度:来源:
如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.
(1)求证:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.

答案
(1)证明见解析;(2);(3)
解析

试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;
(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;
(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.
试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∵∠CBD=∠A=36°,∠C=∠C,
∴△ABC∽△BCD;
(2)∵∠A=∠ABD=36°,
∴AD=BD,
∵BD=BC,
∴AD=BD=CD=1,
设CD=x,则有AB=AC=x+1,
∵△ABC∽△BCD,
,即
整理得:x2+x-1=0,
解得:x1=,x2=(负值,舍去),
则x=
(3)过B作BE⊥AC,交AC于点E,

∵BD=CD,
∴E为CD中点,即DE=CE=
在Rt△ABE中,cosA=cos36°=
在Rt△BCE中,cosC=cos72°=
则cos36°-cos72°=-=
【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.
举一反三
如图,有小岛A和小岛B,轮船以45km/h的速度由C向东航行,在C处测得A的方位角为北偏东60°,测得B的方位角为南偏东45°,轮船航行2小时后到达小岛B处,在B处测得小岛A在小岛B的正北方向.求小岛A与小岛B之间的距离(结果保留整数,参考数据:≈1.41,≈2.45)

题型:不详难度:| 查看答案
计算:﹣4cos30°+(π﹣3.14)0+
题型:不详难度:| 查看答案
如图,若△ABC和△DEF的面积分别为,则
A.B.C.D.

题型:不详难度:| 查看答案
如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF,如图2,展形再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为M,EM交AB于N,则tan∠ANE=                .

题型:不详难度:| 查看答案
在一次科技活动中,小明进行了模拟雷达雪描实验.如图,表盘是△ABC,其中AB=AC,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同的旋转速度返回A、B,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB处开始旋转计时,旋转1秒, 时光线AP交BC于点M,BM的长为()cm.
(1)求AB的长;
(2)从AB处旋转开始计时,若旋转6秒,此时AP与BC边交点在什么位置?若旋转2014秒,此时AP与BC边交点在什么位置?并说明理由.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.