计算:sin60°·cos30°-tan45°=          .

计算:sin60°·cos30°-tan45°=          .

题型:不详难度:来源:
计算:sin60°·cos30°-tan45°=          
答案

解析

试题分析:sin60°·cos30°-tan45°==
点评:本题考查三角函数,考生解答本题的关键是掌握三角函数值,要熟记特殊角的三角函数值,属基础题
举一反三
金秋时节,小芳在花雨广场放风筝,已知风筝拉线长60米(假设拉线是直的),且拉线与水平夹角为60°(如图所示),若小芳的身高忽略不计,则风筝离地面的高度是   米.(结果保留根号)

题型:不详难度:| 查看答案
如图,王明站在地面B处用测角仪器测得楼顶点E的仰角为45°,楼顶上旗杆顶点F的仰角为55°,已知测角仪器高AB=1.5米,楼高CE=14.5米,求旗杆EF的高度(精确到1米).(供参考数据:sin55°≈0.8,cos55°≈0.57,tan55°≈1.4).

题型:不详难度:| 查看答案
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km。

(1)判断AB、AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km)。(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3. 49,sin76°≈0.97,cos76°≈0.24)
题型:不详难度:| 查看答案
已知点C是线段AB的黄金分割点(AC>BC),若AB=10cm,则AC=          
题型:不详难度:| 查看答案
赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,求学校旗杆的高度。

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.