如图,已知PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.

如图,已知PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.

题型:不详难度:来源:
如图,已知PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.

(1)求∠APB的度数;
(2)当OA=3时,求AP的长.
答案
(1)60°;(2).
解析

试题分析:(1)根据四边形的内角和为360°,根据切线的性质可知:∠OAP=∠OBP=90°,求出∠AOB的度数,可将∠APB的度数求出;
(2)作辅助线,连接OP,在Rt△OAP中,利用三角函数,可将AP的长求出.
试题解析:(1)∵在△ABO中,OA=OB,∠OAB=30°,
∴∠AOB=180°-2×30°=120°,
∵PA、PB是⊙O的切线,
∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
∴在四边形OAPB中,
∠APB=360°-120°-90°-90°=60°.
(2)如图,连接OP;

∵PA、PB是⊙O的切线,
∴PO平分∠APB,即∠APO=∠APB=30°,
又∵在Rt△OAP中,OA=3,∠APO=30°,
∴AP=.
考点: 切线的性质.
举一反三
如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,S△ABC=10cm2,C△ABC=10cm,且∠C=60°求:

(1)⊙O的半径r;
(2)扇形OEF的面积(结果保留π);
(3)扇形OEF的周长(结果保留π)。
题型:不详难度:| 查看答案
如图,⊙O的直径AB垂直弦CD于点E,点F在AB的延长线上,且∠BCF=∠A.

(1)求证:直线CF是⊙O的切线;
(2)若⊙O的半径为5,DB=4.求sin∠D的值.
题型:不详难度:| 查看答案
如图,在一个横截面为Rt△ABC的物体中,∠ACB=90°,∠CAB=30°,BC=1米。工人师傅把此物体搬到墙边,先将AB边放在地面(直线)上,再按顺时针方向绕点B翻转到△的位置(上),最后沿的方向平移到△的位置,其平移的距离为线段AC的长度(此时恰好靠在墙边)。

(1)求出AB的长;
(2)求出AC的长;
(3)画出在搬动此物的整个过程A点所经过的路径,并求出该路径的长度(精确到0.1米)。
题型:不详难度:| 查看答案
若圆的一条弦把圆分成度数的比为1:3的两段弧,则劣弧所对的圆周角等于( )
A.B.C.D.

题型:不详难度:| 查看答案
如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为   

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.