试题分析:(1)利用切线长定理得出AD=AF,BD=BE,CE=CF,进而得出BD=CF,即可得出答案; (2)首先连接OD、OE,进而利用切线的性质得出∠ODA=∠OFA=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径. 试题解析:(1)∵⊙O是△ABC的内切圆,切点为D、E、F,∴AD=AF,BD=BE,CE=CF. ∵AB=AC,∴AB-AD=AC-AF,即BD=CF. ∴BE=CE. (2)如图,连接OD、OF,
∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OFA=∠A=90°. 又OD=OF,∴四边形ODAF是正方形. 设OD=AD=AF=r,则BE=BD=CF=CE=. 在△ABC中,∠A=90°,∴. 又BC=BE+CE,∴,解得:r=. ∴⊙O的半径是. |