如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位

如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位

题型:不详难度:来源:
如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒.

(1)当t为何值时,PC∥DB;
(2)当t为何值时,PC⊥BC;
(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.
答案
解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,
∴DC=5,OC=4,OB=3,
∵DC⊥y轴,x轴⊥y轴,∴DC∥BP。
∵PC∥DC,∴四边形DBPC是平行四边形。
∴DC=BP=5。∴OP=5﹣3=2。
∵2÷1=2,∴当t为2秒时,PC∥BD。
(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90。
∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°。∴∠CPO=∠BCO。
∴△PCO∽△CBO。∴,即,解得
÷1=,∴当t为秒时,PC⊥BC。
(3)设⊙P的半径是R,分为三种情况:
①当⊙P与直线DC相切时,
如图1,过P作PM⊥DC交DC延长线于M,

则PM=OC=4=OP,
∵4÷1=4,∴t=4秒。
②如图2,当⊙P与BC相切时,

∵∠BOC=90°,BO=3,OC=4,∴由勾股定理得:BC=5。
∵∠PMB=∠COB=90°,∠CBO=∠PBM,∴△COB∽△PBM。
,即,解得R=12。
∵12÷1=12,∴t=12秒。
③如图3,当⊙P与DB相切时,

根据勾股定理得:
∵∠PMB=∠DAB=90°,∠ABD=∠PBM
∴△ADB∽△MPB。
,即,解得
∵()÷1=,∴t秒。
综上所述,当⊙P与△BCD的边(或边所在的直线)相切时,t=4秒或12秒或t=秒。
解析
(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可。
(2)证△PCO∽△CBO,得出,求出即可。
(3)设⊙P的半径是R,分为①当⊙P与直线DC相切时,②当⊙P与BC相切时,③当⊙P与DB相切时三种情况讨论即可。
举一反三
已知⊙O1与⊙O2的半径分别为3cm和5cm,若圆心距O1O2=8cm,则⊙O1与⊙O2的位置关系是【   】
A.相交B.相离C.内切D.外切

题型:不详难度:| 查看答案
如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=     cm.
题型:不详难度:| 查看答案
如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=     度.

题型:不详难度:| 查看答案
如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为BC的中点.

(1)求证:AB=BC;
(2)求证:四边形BOCD是菱形.
题型:不详难度:| 查看答案
两圆半径分别为3cm和7cm,当圆心距d=10cm时,两圆的位置关系为【   】
A.外离B.内切C.相交D.外切

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.