如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连结BC,AF.(1)求证:直线PA为

如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连结BC,AF.(1)求证:直线PA为

题型:不详难度:来源:
如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连结BC,AF.

(1)求证:直线PA为⊙O的切线;
(2)若BC=6,=1∶2,求⊙O的半径的长.
答案
(1)连接OB,根据切线的性质可得∠PBO=90°,再有OA=OB,BA⊥PO于D,公共边PO可证得△PAO≌△PBO,即得∠PAO=∠PBO=90°,从而可以证得结论;(2)5
解析

试题分析:(1)连接OB,根据切线的性质可得∠PBO=90°,再有OA=OB,BA⊥PO于D,公共边PO可证得△PAO≌△PBO,即得∠PAO=∠PBO=90°,从而可以证得结论;
(2)设AD=x,根据=1∶2,即可表示出FD=2x,OA=OF=2x-3,在Rt△AOD中,根据勾股定理即可列方程求解.
(1)如图,连接OB

∵PB是⊙O的切线
∴∠PBO=90°
∵OA=OB,BA⊥PO于D
∴AD=BD,∠POA=∠POB
又∵PO=PO
∴△PAO≌△PBO
∴∠PAO=∠PBO=90°
∴直线PA为⊙O的切线;
(2)∵OA=OC,AD=BD,BC=6
∴OD=BC=3
设AD=x
=1∶2
∴FD=2x,OA=OF=2x-3
在Rt△AOD中,由勾股定理得(2x-3)2=x2+32
解得x1=4,x2=0(不合题意,舍去)
∴AD=4,OA=2x-3=5
即⊙O的半径的长5.
点评:解答本题的关键是熟练掌握切线垂直于经过切点的半径,注意勾股定理在圆中的灵活应用.
举一反三
如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为
A.40°B.50° C.80°D.100°

题型:不详难度:| 查看答案
⊙O1和⊙O2的半径分别为3cm和5cm,若O1O2=8cm,则⊙O1和⊙O2的位置关系是
A.外切B.相交C.内切D.内含

题型:不详难度:| 查看答案
如图,在边长为2的等边三角形ABC中,以B为圆心,AB为半径作,在扇形BAC内作⊙O与AB、BC、都相切,则⊙O的周长等于

A.            B.            C.            D.
题型:不详难度:| 查看答案
已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积为     .
题型:不详难度:| 查看答案
如图,AB为⊙O的直径,直线DT切⊙O于T,AD⊥DT于D,交⊙O于点C,AC=2,DT =,求∠ABT的度数.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.