在数列中,,且成等差数列,成等比数列.(1)求;(2)根据计算结果,猜想的通项公式,并用数学归纳法证明.

在数列中,,且成等差数列,成等比数列.(1)求;(2)根据计算结果,猜想的通项公式,并用数学归纳法证明.

题型:不详难度:来源:
在数列中,,且成等差数列,成等比数列.
(1)求
(2)根据计算结果,猜想的通项公式,并用数学归纳法证明.
答案
(1) ,;(2) ,证明过程见试题解析.
解析

试题分析:(1)由已知得,令,可得,又,令,可得,依次分别求得其余各项; (2)由(1)中结果,易猜想出,用数学归纳法证明中,当时,需证方可得结论成立.
解:(1)由已知条件得,
由此算出,
.
(2)由(1)的计算可以猜想,
下面用数学归纳法证明:
①当时,由已知可得结论成立,
②假设当时猜想成立,即
那么,当时,
,
,
因此当时,结论也成立.
当①和②知,对一切,都有成立.    12分
举一反三
用数学归纳法证明1++…+> (n∈N*)成立,其初始值至少应取(  )
A.7B.8C.9D.10

题型:不详难度:| 查看答案
用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )
A.2k+2B.2k+3
C.2k+1D.(2k+2)+(2k+3)

题型:不详难度:| 查看答案
某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得(  )
A.n=6时该命题不成立B.n=6时该命题成立
C.n=4时该命题不成立D.n=4时该命题成立

题型:不详难度:| 查看答案
平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为(  )
A.n+1B.2n
C.D.n2+n+1

题型:不详难度:| 查看答案
用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开(  )
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.