如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,证明

如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,证明

题型:不详难度:来源:
如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,且∠CBD=∠BAC,OD交⊙O于点E.
(1)求证:BD是⊙O的切线;
(2)若点E为线段OD的中点,证明:以O、A、C、E为顶点的四边形是菱形;
(3)作CF⊥AB于点F,连接AD交CF于点G(如图2),求FG FC 的值.
答案
(1)(2)见解析(3)
解析
(1)证明:∵AB是⊙O的直径,
∴∠BCA=90°,
∴∠ABC+∠BAC=90°,
又∵∠CBD=∠BA,
∴∠ABC+∠CBD=90°,
∴∠ABD=90°,
∴OB⊥BD,
∴BD为⊙O的切线;
(2)证明:连CE、OC,BE,如图,
∵OE=ED,∠OBD=90°,

∴BE=OE=ED,
∴△OBE为等边三角形,
∴∠BOE=60°,
又∵AC∥OD,
∴∠OAC=60°,
又∵OA=OC,
∴AC=OA=OE,
∴AC∥OE且AC=OE,
∴四边形OACE是平行四边形,
而OA=OE,
∴四边形OACE是菱形;
(3)解:∵CF⊥AB,
∴∠AFC=∠OBD=90°,
而AC∥OD,
∴∠CAF=∠DOB,
∴Rt△AFC∽Rt△OBD,
,即
又∵FG∥BD,
∴△AFG∽△ABD,
,即


(1)由AB是⊙O的直径,根据直径所对的圆周角为直角得到∠BCA=90°,则∠ABC+∠BAC=90°,而∠CBD=∠BA,得到∠ABC+∠CBD=90°,即OB⊥BD,根据切线的判定定理即可得到BD为⊙O的切线;
(2)连CE、OC,BE,根据直角三角形斜边上的中线等于斜边的一半得到BE=OE=ED,则△OBE为等边三角形,于是∠BOE=60°,又因为AC∥OD,则∠OAC=60°,AC=OA=OE,即有AC∥OE且AC=OE,可得到四边形OACE是平行四边形,加上OA=OE,即可得到四边形OACE是菱形;
(3)由CF⊥AB得到∠AFC=∠OBD=90°,而AC∥OD,则∠CAF=∠DOB,根据相似三角形的判定易得Rt△AFC∽Rt△OBD,则有 ,即,再由FG∥BD易证得△AFG∽△ABD,则,即 ,然后求FC与FG的比即可一个定值.
举一反三
如图,在直角坐标系中,⊙O的半径为1,则直线y=﹣x+与⊙O的位置关系是(     ).
A.相离B.相交C.相切D.以上三种情形都有可能

题型:不详难度:| 查看答案
如图,AB是⊙O的直径,P在AB的延长线上,PD与⊙O相切于D,C在⊙O上,PC=PD.

(1)求证:PC是⊙O的切线.
(2)连接AC,若AC=PC,PB=1,求⊙O的半径.
题型:不详难度:| 查看答案
如图,在△ABC中,AB=AC,∠A=30°,以AB为直径的⊙O交BC于点D,交AC于点,连结DE,过点B作BP平行于DE,交⊙O于点P,连结EP、CP、OP.
(1)(3分)BD=DC吗?说明理由;
(2)(3分)求∠BOP的度数;
(3)(3分)求证:CP是⊙O的切线;
如果你解答这个问题有困难,可以参考如下信息:
为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP交AC于点G,证△AOG∽△CPG”;小强说:“过点C作CH⊥AB于点H,证四边形CHOP是矩形”.
题型:不详难度:| 查看答案
定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______

(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是【   】
A.45°B.85° C.90°D.95°

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.