连接C1A,C2B,C3C, ∵三半圆都与直线OC相切, ∴C1A⊥OA,C1B⊥OB,C3C⊥OC, 又∵三个半圆依次与直线y= x相切并且圆心都在x轴上, ∴y= x的倾斜角是30°, 又∵三半圆彼此相外切, ∴O C1="2" C1A=2r1,0 C1="2" C1B=2r2="O" C1+r1+r2=3r1+r2,0 C3="2" C3C="O" C1+r1+2r2+r3=2r3, ∴2r2=3r1+r2, ∴r2=3r1, ∵r1=1=30,∴r2=3=31, ∴O C1=2,0 C1=2r2=6r1=6,0 C3=18, ∴r3=9=32, ∴按此规律归纳得:rn=3n-1, 则=3. |