如图,△内接于⊙,点在的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

如图,△内接于⊙,点在的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。

题型:不详难度:来源:
如图,△内接于⊙,点的延长线上,sinB=,∠CAD=30°⑴求证:是⊙的切线;⑵若,求的长。
答案
(1)是⊙的切线
(1)证明:如图,连接OA
∵sinB=  ∴∠B=30°∴∠AOC=60°.
又OA=OC   ∴△AOC为等边三角形,∴∠OAC=60°.
又∠CAD=30°, ∴∠OAD=∠OAC+∠CAD=60°+30°=90°
∴OA⊥AD , ∴AD是⊙O的切线。…………………4分
(2)∵OD⊥AB,  ∴=  ∴AC=BC=5
由(1)知:OA="AC," ∴OA=5………………………6分
在RT△OAD中, tan∠AOD= ,
∴AD="OA" ·tan∠AOD="5" ·tan60°=5……………8分
解析
(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线;
(2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD.
举一反三
已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
小题1:判断DE与⊙O的位置关系,并证明你的结论
小题2:若DE的长为2,cosB=,求⊙O的半径.
题型:不详难度:| 查看答案
如图,⊙O是△ABC的外接圆,∠A=50°,则∠OBC的度数等于(*)
A.50°B.40°C.45°D.100°

题型:不详难度:| 查看答案
如图,是以边长为6的等边△ABC一边AB为半径的四分之一圆周,P为上一动点.当BP经过弦AD的中点E时,四边形ACBE的周长为  *  (结果用根号表示).
题型:不详难度:| 查看答案
如图,已知⊙O的弦AB等于半径,连结OB并延长使BC=OB.

(1)∠ABC=     °;
(2)AC与⊙O有什么关系?请证明你的结论;
(3)在⊙O上,是否存在点D,使得AD=AC?若存在,请画出图形,并给出证明;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,是O的直径,点在圆上,且50°.则( * )
A.50°B.40°
C.30°D.20°

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.