.如图,⊙0内切于△ABC,切点分别为D、E、F. 已知<B=50°,<C=60°,连结OE、OF、DE、DF.则<EDF=             度.

.如图,⊙0内切于△ABC,切点分别为D、E、F. 已知<B=50°,<C=60°,连结OE、OF、DE、DF.则<EDF=             度.

题型:不详难度:来源:
.如图,⊙0内切于△ABC,切点分别为D、E、F. 已知<B=50°,<C=60°,连结OE、OF、DE、DF.则<EDF=             度.
答案
55
解析
先由三角形的内角和定理求出∠A,然后根据切线的性质和四边形的内角和求出∠EOF,最后根据圆周角定理得到∠EDF的度数.
解:∵∠B=50°,∠C=60°,
∴∠A=180°-50°-60°=70°;
又∵E,F是切点,
∴OE⊥AB,OF⊥AC,
∴∠EOF=180°-70°=110°,
∴∠EDF=×110°=55°.故填55°.
举一反三
(10分)如图,Rt△ABC中,<ACB=90°,AC="4" ,AB="5" ,点P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离PQ为y.
(1)求y与x的函数表达式,并写出自变量x的取值范围;
(2)试讨论以P为圆心、半径长为x的圆与AB所在直线的位置关系,并指出相应的x取值范围.
题型:不详难度:| 查看答案
如图,△ABC内接于⊙O,∠C= 45º,AB=4,则⊙O的半径为【    】
A.2B.4C.2D.

题型:不详难度:| 查看答案
(本题满分12分,第(1)题7分,第(2)题5分)
如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若,求证:四边形OCBD是菱形.
题型:不详难度:| 查看答案
(本题满分14分,第(1)题4分,第(2)题4分,第(2)题6分)
在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5.E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F.
(1)如图,当点F在线段DE上时,设BE,DF,试建立关于的函数关系式,
并写出自变量的取值范围;
(2)当以CD直径的⊙O与⊙E与相切时,求的值;
(3)联接AF、BF,当△ABF是以AF为腰的等腰三角形时,求的值。
题型:不详难度:| 查看答案
如果两圆的半径分别是2 cm和3cm,圆心距为5cm,那么这两圆的位置关系是(   )
A.内切;B.相交;C.外切;D.外离.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.