P为⊙O外一点,PA、PB分别切⊙O于点A、B,∠APB=70°,点C为⊙O上一点(不与A、B重合),则∠ACB的度数为       

P为⊙O外一点,PA、PB分别切⊙O于点A、B,∠APB=70°,点C为⊙O上一点(不与A、B重合),则∠ACB的度数为       

题型:不详难度:来源:
P为⊙O外一点,PA、PB分别切⊙O于点A、B,∠APB=70°,点C为⊙O上一点
(不与A、B重合),则∠ACB的度数为       
答案
55°或125°
解析

分析:连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=70°,
∴在四边形AOBP中,∠AOB=360°-90°-90°-70°=110°,
∴∠ADB=×∠AOB=×110°=55°,
即当C在D处时,∠ACB=55°.
在四边形ADBC中,∠ACB=180°-∠ADB=180°-55°=125°.
于是∠ACB的度数为55°或125°,
故答案为:55°或125°.
举一反三

如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上, CA=CD,∠CDA=30°.

(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为4,求点A到CD所在直线的距离
题型:不详难度:| 查看答案
如图2,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为
A.y=B.y=C.y=D.y=

题型:不详难度:| 查看答案
如图,在AABC中,AB=BC=2,以AB为直径的⊙0与BC相切于点B,则
AC等于(   )

A.              B.             c.2             D.2
题型:不详难度:| 查看答案
如图,在半径为10的⊙O 中,OC垂直弦AB于点D, AB=16,则CD的长是 
题型:不详难度:| 查看答案
如图,直线轴、轴分别相交于两点,圆心的坐标为,圆轴相切于点.若将圆沿轴向左移动,当圆与该直线相交时,横坐标为整数的点的个数是(      )
A.2B.3C.4D.5

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.