设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2、再设z1,z2在复平面内的对应点是Z1,Z2,求以Z1,Z2为焦点且经过原点的椭圆的长轴

设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2、再设z1,z2在复平面内的对应点是Z1,Z2,求以Z1,Z2为焦点且经过原点的椭圆的长轴

题型:不详难度:来源:
设p≠0,实系数一元二次方程z2-2pz+q=0有两个虚数根z1,z2、再设z1,z2在复平面内的对应点是Z1,Z2,求以Z1,Z2为焦点且经过原点的椭圆的长轴的长.
答案
因为p,q为实数,p≠0,z1,z2为虚数,
所以(-2p)2-4q<0,q>p2>0
由z1,z2为共轭复数,知Z1,Z2关于x轴对称,
所以椭圆短轴在x轴上,又由椭圆经过原点,
可知原点为椭圆短轴的一端点
根据椭圆的性质,复数加,减法几何意义及一元二次方程根与系数的关系,
可得椭圆的短轴长=2b=|z1+z2|=2|p|,
焦距离=2c=|z1-z2|=


|(z1+z2)2-4z1z2|
=2


q-p2

长轴长=2a=2


b2+c2
=2


q
.
举一反三
椭圆
x2
25
+
y2
t
=1
,两焦点间距离为6,则t=______.
题型:虹口区一模难度:| 查看答案
x2
4
+y2=1的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|等于(  )
A.


3
2
B.


3
C.
7
2
D.4
题型:山东难度:| 查看答案
设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F1,右准线为l1,若过F1且垂直于x轴的弦长等于点F1到l1的距离,则椭圆的率心率是 ______.
题型:广东难度:| 查看答案
椭圆
x2
a2
+
y2
b2
=1
(a>b>0),B为短轴的一个顶点,焦点为F1,F2,且△BF1F2是等边三角形.
(1)求
b
a
的值;
(2)如直线y=
1
2
x+2
交椭圆于P、Q两点,且|PQ|=3


5
Z,求椭圆的方程.
题型:虹口区一模难度:| 查看答案
F1,F2是椭圆C:
x2
8
+
y2
4
=1
的焦点,在C上满足PF1⊥PF2的点P的个数为______.
题型:湖南难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.