(1)证明:连接OD; ∵AB是直径, ∴∠ACB=90°; ∵EF∥BC, ∴∠AFE=∠ACB=90°, ∵OA=OD, ∴∠OAD=∠ODA; 又∵AD平分∠BAC, ∴∠OAD=∠DAC, ∴∠ODA=∠DAC, ∴OD∥AF, ∴∠ODE=∠AFD=90°, 即OD⊥EF; 又∵EF过点D, ∴EF是⊙O的切线.
(2)连接BD,CD; ∵AB是直径, ∴∠ADB=90°, ∴∠ADB=∠AFD; ∵AD平分∠BAC, ∴∠OAD=∠DAC, ∴BD=CD; 设BD=CD=a; 又∵EF是⊙O的切线, ∴∠CDF=∠DAC, ∴∠CDF=∠OAD=∠DAC, ∴△CDF∽△ABD∽△ADF, ∴==; ∵sin∠ABC==, ∴设AC=4x,AB=5x, ∴=a2=5x, ∴在Rt△CDF中DF2=CD2-CF2=5x-1; 又∵=, ∴5x-1=1×(1+4x), ∴x=2, ∴AB=5x=10,AC=4x=8; ∵EF∥BC, ∴△ABC∽△AEF, ∴=,=,AE=, ∴在Rt△AEF中,EF===.
|