如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线

如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线

题型:不详难度:来源:
如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EFBC交AB的延长线于点E,交AC的延长线于点F.
(1)求证:EF为⊙O的切线;
(2)若sin∠ABC=
4
5
,CF=1,求⊙O的半径及EF的长.
答案
(1)证明:连接OD;
∵AB是直径,
∴∠ACB=90°;
∵EFBC,
∴∠AFE=∠ACB=90°,
∵OA=OD,
∴∠OAD=∠ODA;
又∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴ODAF,
∴∠ODE=∠AFD=90°,
即OD⊥EF;
又∵EF过点D,
∴EF是⊙O的切线.

(2)连接BD,CD;
∵AB是直径,
∴∠ADB=90°,
∴∠ADB=∠AFD;
∵AD平分∠BAC,
∴∠OAD=∠DAC,
∴BD=CD;
设BD=CD=a;
又∵EF是⊙O的切线,
∴∠CDF=∠DAC,
∴∠CDF=∠OAD=∠DAC,
∴△CDF△ABD△ADF,
CF
CD
=
BD
AB
CF
DF
=
DF
AF

∵sin∠ABC=
AC
AB
=
4
5

∴设AC=4x,AB=5x,
1
a
=
a
5x
a2=5x,
∴在Rt△CDF中DF2=CD2-CF2=5x-1;
又∵
CF
DF
=
DF
AF

∴5x-1=1×(1+4x),
∴x=2,
∴AB=5x=10,AC=4x=8;
∵EFBC,
∴△ABC△AEF,
AB
AE
=
AC
AF
10
AE
=
8
9
AE=
45
4

∴在Rt△AEF中,EF=


AE2-AF2
=


(
45
4
)
2
-92
=
27
4

举一反三
如图,⊙O1和⊙O2内切于点P,且⊙O1过点O2,PB是⊙O2的直径,A为⊙O2上的点,连接AB,过O1作O1C⊥BA于C,连接CO2.已知PA=
4
3
,PB=4.
(1)求证:BA是⊙O1的切线;
(2)求∠BCO2的正切值.
题型:不详难度:| 查看答案
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=
1
2
∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=


5
5
,求BC和BF的长.
题型:不详难度:| 查看答案
已知:如图,直线PA交⊙O于A、E两点,PA的垂线DC切⊙O于点C,过A点作⊙O的直径AB.
(1)求证:AC平分∠DAB;
(2)若DC=4,DA=2,求⊙O的直径.
题型:不详难度:| 查看答案
如图,在⊙O中,AB为直径,半径OE⊥AB,M为半圆上任意一点,过M作⊙O的切线交OE的延长线与P,过A作弦ACMP,连MB、BC,BM交OP于N点.
(1)求证:MP=PN;
(2)已知AC=4,PE=1,求sin∠ABC的值.
题型:不详难度:| 查看答案
如图,已知⊙O半径为8cm,点A为半径OB延长线上一点,射线AC切⊙O于点C,弧BC的长为
8
3
π
cm,求线段AB的长.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.