如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q同时从A点出发,分别做匀速运动,其中点P沿AB、BC向终点C运动,速度

如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q同时从A点出发,分别做匀速运动,其中点P沿AB、BC向终点C运动,速度

题型:不详难度:来源:
如图所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q同时从A点出发,分别做匀速运动,其中点P沿AB、BC向终点C运动,速度为每秒2个单位,点Q沿AD向终点D运动,速度为每秒1个单位,当这两点中有一个点到达自己的终点时,另一个点也停止运动,设这两个点从出发运动了t秒.
(1)动点P与Q哪一点先到达自己的终点?此时t为何值;
(2)当O<t<2时,写出△PQA的面积S与时间t的函数关系式;
(3)以PQ为直径的圆能否与CD相切?若有可能,求出t的值或t的取值范围;若不可能,请说明理由.
答案
(1)∵当P到c点时,t=5(秒),
当Q到D点时,t=8(秒),
∴点P先到达终点,此时t为5秒;

(2)如图,作BE⊥AD于点E,PF⊥AD于点F.
AE=2,在Rt△ABE中∠A=60°,PF=


3
t,
∴s=


3
2
t2(0<t<2);

(3)当0<t<2时,以PO为直径的圆与CD不可能相切.
当2≤t≤5时,设以PQ为直径的⊙O与CD相切于点K,
则有PC=10-2t,DQ=8-t,OK⊥DC.
∵OK是梯形PCDQ的中位线,
∴PQ=20K=PC+DO=18-3t.
在直角梯形PCDQ中,PO2=CD2+(DO-CP)2
解得:t=
13±


15
2

13+


15
2
>5,不合题意舍去.
2<
13-


15
2
<5,
因此,当t=
13-


15
2
时,以PQ为直径的圆与CD相切.
举一反三
如图半径为R和r(R>r)的圆O1与圆O2相交,公切线AB与连心线的夹角为30°,则公切线AB的长为(  )
A.
1
2
(R-r)
B.


3
3
(R-r)
C.


3
(R-r)
D.2(R-r)
题型:不详难度:| 查看答案
如图1,AB是⊙O的直径,直线l交⊙O于C1、C2,AD⊥l,垂足为D.
(1)求证:AC1•AC2=AB•AD.
(2)若将直线l向上平移(如图2),交⊙O于C1、C2,使弦C1C2与直径AB相交(交点不与A、B重合),其他条件不变,请你猜想,AC1、AC2、AB、AD之间的关系,并说明理由.
(3)若将直线l平移到与⊙O相切时,切点为C,其他条件不变,请你在图3上画出变化后的图形,标好相应的字母并猜想AC、AB、AD的关系是什么?(只写出关系,不加以说明)
题型:不详难度:| 查看答案
如图,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作ADOC交⊙O于点D,连接CD.
(1)求证:CD是⊙O的切线;
(2)若AD=2,直径AB=6,求线段BC的长.
题型:不详难度:| 查看答案
如图AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)若AB=2,∠P=30°,求AP的长;
(2)若D为AP的中点,求证:直线CD是⊙O的切线.
题型:不详难度:| 查看答案
如图,AB是⊙O的直径,延长弦BD到点C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.
(1)判断直线DE与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为6,∠BAC=60°,延长ED交AB延长线于点F,求阴影部分的面积.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.