如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED

如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)若⊙O的半径为3,ED

题型:不详难度:来源:
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OEAB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.
答案
(1)证明:连接OD,CD,
∵AC是⊙O的直径,
∴∠CDA=90°=∠BDC,
∵OEAB,CO=AO,
∴BE=CE,
∴DE=CE,
∵在△ECO和△EDO中





DE=CE
EO=EO
OC=OD

∴△ECO≌△EDO,
∴∠EDO=∠ACB=90°,
即OD⊥DE,OD过圆心O,
∴ED为⊙O的切线.

(2)过O作OM⊥AB于M,过F作FN⊥AB于N,
则OMFN,∠OMN=90°,
∵OEAB,
∴四边形OMFN是矩形,
∴FN=OM,
∵DE=4,OC=3,由勾股定理得:OE=5,
∴AC=2OC=6,
∵OEAB,
∴△OEC△ABC,
OC
AC
=
OE
AB

3
6
=
5
AB

∴AB=10,
在Rt△BCA中,由勾股定理得:BC=


102-62
=8,

sin∠BAC=
BC
AB
=
OM
OA
=
8
10

OM
3
=
4
5

OM=
12
5
=FN,
∵cos∠BAC=
AC
AB
=
AM
OA
=
3
5

∴AM=
9
5

由垂径定理得:AD=2AM=
18
5

即△ADF的面积是
1
2
AD×FN=
1
2
×
18
5
×
12
5
=
108
25

答:△ADF的面积是
108
25
举一反三
如图,在直角梯形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分线交BC于E,连接DE.
(1)说明点D在△ABE的外接圆上;
(2)若∠AED=∠CED,试判断直线CD与△ABE外接圆的位置关系,并说明理由.
题型:不详难度:| 查看答案
如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O;(不写作法,保留作图痕迹)
(2)求证:BC为⊙O的切线.
题型:不详难度:| 查看答案
如图(1)正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动到点M,点C),以AB为直径作⊙O,过点P作⊙O的切线交AD于点F,切点为E.
(1)求四边形CDFP的周长;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC,FP相交于点G,连接OE并延长交直线DC于H〔如图(2)〕.问是否存在点P,使△EFO△EHG(其中△EFO顶点E、F、O与△EHG顶点E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.
题型:不详难度:| 查看答案
如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是______.
题型:不详难度:| 查看答案
已知:如图,AB是⊙O的直径,点C是⊙O上的一点,CD交AB的延长线于D,∠DCB=∠CAB.
(1)求证:CD为⊙O的切线.
(2)若CD=4,BD=2,求⊙O的半径长.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.