(1)证明:∵AB是直径, ∴∠ACB=90°. ∴∠CAB+∠ABC=90°.(1分) ∵∠MAC=∠ABC, ∴∠MAC+∠CAB=90°. 即MA⊥AB. ∴MN是半圆的切线.(2分)
(2)证明: 证法1:∵D是弧AC的中点, ∴∠DBC=∠2.(3分) ∵AB是直径, ∴∠CBG+∠CGB=90°. ∵DE⊥AB, ∴∠FDG+∠2=90°.(4分) ∵∠DBC=∠2, ∴∠FDG=∠CGB=∠FGD. ∴FD=FG.(5分) 证法2:连接AD,则∠1=∠2,(3分) ∵AB是直径, ∴∠ADB=90°. ∴∠1+∠DGF=90°. 又∵DE⊥AB, ∴∠2+∠FDG=90°.(4分) ∴∠FDG=∠FGD. ∴FD=FG.(5分)
(3)解法1:过点F作FH⊥DG于H,(6分) 又∵DF=FG, ∴S△FGH=S△DFG=×4.5=.(7分) ∵AB是直径,FH⊥DG, ∴∠C=∠FHG=90°.(8分) ∵∠HGF=∠CGB, ∴△FGH∽△BGC. ∴=()2=()2=.(9分) ∴S△BCG=×=16.(10分)
解法2:∵∠ADB=90°,DE⊥AB, ∴∠3=∠2.(6分) ∵∠1=∠2, ∴∠1=∠3. ∴AF=DF=FG.(7分) ∴S△ADG=9.(8分) ∵∠ADG=∠BCG,∠DGA=∠CGB. ∴△ADG∽△BCG.(9分) ∴=()2=()2=. ∴S△BCG=×9=16.(10分)
解法3:连接AD,过点F作FH⊥DG于H. ∵SFDG=DG×FH=×3FH=4.5, ∴FH=3. ∵H是DG的中点,FH∥AD, ∴AD=2FH=6 ∴S△ADG=AD•DG=×6×3=9. ∵∠ADG=∠BCG,∠DGA=∠CGB. ∴△ADG∽△BCG. ∵DG=3,GC=4, ∴=()2, ∴=()2, ∴S△BCG=16. |