如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.直线AE与l相交于点D.(1)如果AD=10,BD=6,

如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.直线AE与l相交于点D.(1)如果AD=10,BD=6,

题型:不详难度:来源:
如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.直线AE与l相交于点D.
(1)如果AD=10,BD=6,求DE的长;
(2)连接CE,过E作CE的垂线交直线AB于F.当点E在什么位置时,相应的F位于线段AB上、位于BA的延长线上、位于AB的延长线上(写出结果,不要求证明).无论点E如何变化,总有BD=BF.请你就上述三种情况任选一种说明理由.
答案
如图
(1)∵BD是切线,DA是割线BD=6,AD=10
∴DB2=DE•DA
∴DE=
DB2
DA
=
36
10
=3.6;

(2)设M是上半圆的中点,当E在BM弧上时,F在直径AB上
当E在AM弧上时,F在BA的延长线上,当E在下半圆时,F在AB的延长线上
连接BE
∵AB是直径,AC、BD是切线,∠CEF=90°
∴∠AEB=90°,∠CAE=∠FBE,∠DBE=∠BAE
∵∠CEA=90°-∠AEF
∠FEB=90°-∠AEF
∴∠CEA=∠FEB
∴Rt△DBERt△BAE,△CAE△FBE
DB
BA
=
BE
AE
BF
AC
=
BE
AE

∵AC=AB
∴BD=BF.
举一反三
如图,从点P引⊙O的切线PA,PB,切点分别为A,B,DE切⊙O于C,交PA,PB于D,E.若△PDE的周长为20cm,则PA=______cm.
题型:不详难度:| 查看答案
如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=
1
2
CD•OA;⑤∠DOC=90°,其中正确的是(  )
A.①②⑤B.②③④C.③④⑤D.①④⑤

题型:不详难度:| 查看答案
如图,△ABC内接于⊙O,AB为⊙O的直径,过点C作⊙O的切线CM,D是CM上一点,连接BD,且∠DBC=∠CAB.
(1)求证:BD是⊙O的切线;
(2)连接OD,若∠ABC=30°,OA=4,求OD的长.
题型:不详难度:| 查看答案
如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.
(1)求证:PB是⊙O的切线;
(2)若⊙O的半径为2,求弦AB及PA,PB的长.
题型:不详难度:| 查看答案
如图,在三角板ABC中,∠C=90°,∠B=30°,O为AB上一点,⊙O的半径为1,现将三角板平移,使AC与⊙O相切,则AO=______.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.