设全集U={1,2,3,4,5,6,7,8},集合A={5,6,7,8},B={2,4,6,8},求A∩B,CUA和CUB.
题型:解答题难度:一般来源:不详
设全集U={1,2,3,4,5,6,7,8},集合A={5,6,7,8},B={2,4,6,8},求A∩B,CUA和CUB. |
答案
∵全集U={1,2,3,4,5,6,7,8},集合A={5,6,7,8},B={2,4,6,8}, ∴A∩B={6,8},CUA={1,2,3,4},CUB={1,3,5,7}. |
举一反三
已知全集U=A∪B={1,2,3,4,5,6,7},A∩(CUB)={2,4,6},则集合B=( )A.{2,4,6} | B.{1,3,5} | C.{1,3,5,7} | D.{1,2,3,4,5,6,7} |
|
设U=R,A={x|x>0},B={x|x2>1},则A∩(∁UB)=( )A.{x|0≤x<1} | B.{x|0<x≤1} | C.{x|x<0} | D.{x|x>1} |
|
已知集合M={x|-1<x<2},N={y|y=-x2+1},则M∩N=( )A.{x|-1<x<1} | B.{x|-1<x≤1} | C.{x|-1<x<2} | D.∅ |
|
已知集合A={x|x2-3x+2=0}. (1)如果集合B={x|mx+1=0},并且B⊆A,求m的值; (2)如果集合B={x|x2-2x+m=0},并且B∪A=A,试确定m的范围. |
已知集合M={x |
5609396746.html">查看答案