设全集U={1,2,3,4,5,6,7,8,9},∁U(A∪B)={1,3},∁UA∩B={2,4},则集合B=( )A.{1,2,3,4}B.{1,2,3,
题型:单选题难度:简单来源:不详
设全集U={1,2,3,4,5,6,7,8,9},∁U(A∪B)={1,3},∁UA∩B={2,4},则集合B=( )A.{1,2,3,4} | B.{1,2,3,4,5} | C.{5,6,7,8,9} | D.{7,8,9} |
|
答案
因为U={1,2,3,4,5,6,7,8,9},∁U(A∪B)={1,3}, 所以A∪B={2,4,5,6,7,8,9}, 又∁UA∩B={2,4}, A:若B={1,2,3,4},则A∪B={2,4,5,6,7,8,9}不可能,故A错; B:若B={1,2,3,4,5},则A∪B={2,4,5,6,7,8,9}不可能,故B错; C:若B={5,6,7,8,9},则A∪B={2,4,5,6,7,8,9}成立,故C正确; D:若B={7,8,9},则∁UA∩B={2,4}不成立,故D错. 故选C. |
举一反三
已知集合A={x|-4≤x<2 },B={x|-m-1<x≤m-1,m>0},若CRA⊇CRB,求满足条件的m的取值集合. |
设函数f(x)定义域为R且f(x)的值恒大于0,对于任意实数x,y,总有f(x+y)=f(x)•f(y),且当x<0时,f(x)>1. (1)求证:f(0)=1,且f(x)在R上单调递减; (2)设集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B≠∅,求a的取值范围. |
已知集合A={x|x2-3x+2>0},B={x|x2-(a+1)x+a≤0,a>1}. (1)求集合A,B; (2)若(∁RA)∪B=B,求实数a的取值范围. |
已知A={x|x2+2x-8=0},B={x|log2(x2-5x+8)=1},C={x|x2-ax+a2-19=0};若A∩C=∅,B∩C≠∅,求a的值. |
已知函数f(x)=lg(x-2)的定义域为A,函数g(x)=x,x∈[0,9]的值域为B. (1)求A∩B; (2)若C={x|x≥2m-1}且(A∩B)⊆C,求实数m的取值范围. |
最新试题
热门考点