∵f(-x)=-f(x), ∴f(x)为奇函数, ∵f(x)=-f(x+2),即f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=f(x), ∴f(x)是周期函数,周期为4, ∵log216<log220<log232, ∴4<log220<5, ∴0<log220-4<1,即0<log2<1,即-1<log2<0, ∴f(log220)=f(log220-4)=f(log2)=-f(-log2)=-f(log2), ∵x∈(-1,0)时,f(x)=2x+, ∴f(log2)=2log2+=+=1, ∴f(log220)=-1. 故答案为:-1. |