下列函数中在(0,+∞)上是单调递增的是(  )A.y=-x+1B.y=1xC.y=-x2D.y=|x|

下列函数中在(0,+∞)上是单调递增的是(  )A.y=-x+1B.y=1xC.y=-x2D.y=|x|

题型:单选题难度:一般来源:不详
下列函数中在(0,+∞)上是单调递增的是(  )
A.y=-x+1B.y=
1
x
C.y=-x2D.y=|x|
答案
选项A,函数y=-x+1在整个定义域R上为减函数,故不可能在(0,+∞)上单调递增,故错误;
选项B,函数y=
1
x
在(-∞,0)和(0,+∞)上均单调递减,故不可能在(0,+∞)上单调递增,故错误;
选项C,函数y=-x2,在(-∞,0)上单调递增,在(0,+∞)上单调递减,故错误;
选项D,函数y=|x|=





x     x≥0
-x    x<0
,显然在(0,+∞)上单调递增,
故选D
举一反三
已知函数f(x)=ax3-bx+1(a,b∈R),若f(-2)=1,则f(2)=______.
题型:填空题难度:一般| 查看答案
函数f(x)=log
1
2
(-x2+3x-2)
的单调递减区间为(  )
A.(-∞,
3
2
)
B.(1,
3
2
)
C.(
3
2
,2)
D.(
3
2
,+∞)
题型:单选题难度:一般| 查看答案
设函数f(x)=-4x+b,关于x的不等式|f(x)|<c的解集为(-1,2).
(1)求函数f(x)的解析式;
(2)判断函数g(x)=
4x
f(x)
(x>
1
2
)
的单调性,并用定义证明.
题型:解答题难度:一般| 查看答案
已知下列四个命题:
(1)定义在R上的函数g(x),若满足g(2)=g(-2)且 g(-5)=g(5),则g(x)为偶函数;
(2)定义在R上的函数g(x)满足g(2)>g(1),则函数g(x)在R上不是减函数;
(3)y=2x+1的图象可由y=2x的图象向上平移一个单位得到,也可由y=2x的图象向左平移一个单位得到;
(4)f(1-x)的图象可由f(x)的图象先向右平移一个单位,再将图象关于y轴对称得到.
其中,正确的命题序号为______.
题型:填空题难度:一般| 查看答案
已知函数f(x)=





loga(ax2-4x+4)       (x≥1)
(3-a)x+b                 (x≤1)
在(-∞,+∞)上是增函数,则b的取值范围是(  )
A.[-1,0)B.(-1,0]C.(-1,1)D.[0,1)
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.