定义在(0,+∞)上的函数f (x),对于任意的m,n∈(0,+∞),都有f(m•n)=f(m)+f(n)成立,当x>1时,f(x)<0.(Ⅰ)计算f(1);(

定义在(0,+∞)上的函数f (x),对于任意的m,n∈(0,+∞),都有f(m•n)=f(m)+f(n)成立,当x>1时,f(x)<0.(Ⅰ)计算f(1);(

题型:解答题难度:一般来源:不详
定义在(0,+∞)上的函数f (x),对于任意的m,n∈(0,+∞),都有f(m•n)=f(m)+f(n)成立,当x>1时,f(x)<0.(Ⅰ)计算f(1);(Ⅱ)证明f (x)在(0,+∞)上是减函数;(Ⅲ)当f(2)=-
1
2
时,解不等式f(x2-3x)>-1.
答案
(Ⅰ)∵定义在(0,+∞)上的函数f (x)对于任意的m,n∈(0,+∞),满足f(m•n)=f(m)+f(n),
∴f(1)=f(1×1)=f(1)+f(1).∴f(1)=0
证明:(II)设0<x1<x2,∵f(m•n)=f(m)+f(n)即f(m•n)-f(m)=f(n)
f(x2)-f(x1)=f(
x2
x1
x1)-f(x1)
=f(
x2
x1
)+f(x1)-f(x1)=f(
x2
x1
)

因为0<x1<x2,则
x2
x1
>1
,而当x>1时,f(x)<0,从而f(x2)<f(x1
于是f(x)在(0,+∞)上是减函数.
(Ⅲ)因为f(4)=f(2)+f(2)=-1,所以f(x2-3x)>f(4),
因为f(x)在(0,+∞)上是减函数,所以0<x2-3x<4,
解得-1<x<0或3<x<4,
故所求不等式的解集为{x|-1<x<0或3<x<4}.
举一反三
设F(x)=f(x)+f(-x)在区间[
π
2
,π]
是单调递减函数,将F(x)的图象按向量


a
=(
π
2
,0)
平移后得到函数G(x)的图象,则G(x)的一个单调递增区间是(  )
A.[0,
π
2
]
B.[
π
2
,π]
C.[-π,-
π
2
]
D.[-
π
2
,0]
题型:单选题难度:一般| 查看答案
已知函数f(x)=|ax-2|+blnx(x>0,实数a,b为常数).
(1)若a=1,f(x)在(0,+∞)上是单调增函数,求b的取值范围;
(2)若a≥2,b=1,求方程f(x)=
1
x
在(0,1]上解的个数.
题型:解答题难度:一般| 查看答案
用单调性定义证明函数g(x)=
1
x
在(0,+∞)上单调递减.
题型:解答题难度:一般| 查看答案
已知a、b∈R,定义:(1)设a<b,则a⊕b=a,a⊗b=b;(2)有括号的先计算括号.那么下式 (2003⊕2004)⊗(2005⊕2006)的运算结果为______.
题型:填空题难度:一般| 查看答案
已知f(2x+1)=5x+
1
2
,那么f(2)的值是(  )
A.3B.2C.1D.0
题型:单选题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.