定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2.(1)求证:2是函数f(x)的一个周期;(2)求f(x)在区间[

定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2.(1)求证:2是函数f(x)的一个周期;(2)求f(x)在区间[

题型:解答题难度:一般来源:不详
定义在R上的偶函数f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2
(1)求证:2是函数f(x)的一个周期;
(2)求f(x)在区间[2k-1,2k+1],k∈Z上的函数解析式;
(3)是否存在整数k,使
f(x)+2kx-9
x
>0
对任意x∈[2k-1,2k+1]恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.
答案
(1)因为f(x+2)=f[(x+1)+1]=-f(x+1)=-[-f(x)]=f(x)
所以:2是函数f(x)的一个周期(2分)
(2)∵f(x)是以2为周期的函数,即f(x-2k)=f(x),k∈Z
设x∈[2k-1,2k+1],则x-2k∈[-1,1]∴f(x-2k)=(x-2k)2
即f(x)=(x-2k)2,x∈[2k-1,2k+1](k∈Z)(6分)
(3)当x∈[2k-1,2k+1]时,
f(x)+2kx-9
x
>0⇔
x2-2kx+4k2
x
>0

①当k≥1时,则2k-1≥1,∴x>0
∴原题等价于x2-2kx+4k2-9>0对任意x∈[2k-1,2k+1]恒成立.
设g(x)=x2-2kx+4k2-9
当k≥1时,对称轴x=k≤2k-1
则g(2k-1)=4k2-2k-8≥0,
解得k≥
1+


33
3
k≤
1-


33
4
∴整数k≥2(10分)
②当k≤-1时,则2k+1≤-1,∴x<0,
∴原题等价于x2-2kx+4k2-9<0对任意x∈[2k-1,2k+1]恒成立,
设g(x)=x2-2kx+4k2-9
当k≤-1时,对称轴x=k≥2k+1
则g(2k-1)=4k2-2k-8>0,
解得
1-


33
3
<k<
1+


33
4
∴整数k=-1(14分)
③当k=0时,原命题等价于
x2-9
x
>0
对任意x∈[-1,1]恒成立
当x=1时,则-8>0显然不成立∴k≠0(15分)
综上所述,所求k的取值范围是[2,+∞)∪-1.(16分)
举一反三
已知幂函数f(x)满足:对任意x1,x2∈R,当且仅当x1=x2时,有f(x1)=f(x2).则f(-1)+f(0)+f(1)的值为______.
题型:填空题难度:一般| 查看答案
已知二次函数f(x)=x2-mx+2在(-∞,1]上递减,在[1,+∞)上递增,则m=______.
题型:填空题难度:简单| 查看答案
下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=exB.y=sinxC.y=-x3D.y=log
1
2
x
题型:单选题难度:一般| 查看答案
已知幂函数y=(m2-m-1)xm2-2m-3在(0,+∞)内单调递减,则m=______.
题型:填空题难度:简单| 查看答案
求函数y=(
1
3
)x2-x
的单调减区间为 ______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.