设函数y=f(x)满足对任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知当x∈[0,1]时,有f(x)=2-|4x-2|,则f(20136)的值

设函数y=f(x)满足对任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知当x∈[0,1]时,有f(x)=2-|4x-2|,则f(20136)的值

题型:填空题难度:一般来源:盐城二模
设函数y=f(x)满足对任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知当x∈[0,1]时,有f(x)=2-|4x-2|,则f(
2013
6
)
的值为______.
答案
∵f2(x+1)+f2(x)=9,即 f2(x+1)=9-f2(x),
∴f2(x+2)=9-f2(x+1),化简可得 f2(x+2)=9-[9-f2(x)]=f2(x).
再由 函数y=f(x)满足对任意的x∈R,f(x)≥0,可得 f(x+2)=f(x),故函数是周期为2的周期函数.
f(
2013
6
)
=f(336-
1
2
)=f(-
1
2
).
又 f2(-
1
2
)=9-f2(-
1
2
+1)
=9-f2
1
2
),
再由当x∈[0,1]时,有f(x)=2-|4x-2|,可得f(
1
2
)=2-|4×
1
2
-2|=2,
故 f2(-
1
2
)=9-f2
1
2
)=9-4=5,故f(-
1
2
)=


5

f(
2013
6
)
=f(-
1
2
)=


5

故答案为


5
举一反三
定义运算a⊕b=





a(a≤b)
b(a>b)
,则关于非零实数x的不等式(x+
4
x
)⊕4≥8(x⊕
1
x
)的解集为______.
题型:填空题难度:一般| 查看答案
设函数f(x)=





(a-2)x,(x≥2)
(
1
2
)
-1,(x<2)
an=f(n)
,若数列{an}是单调递减数列,则实数a的取值范围为(  )
A.(-∞,2)B.(-∞,
13
8
]
C.(-∞,
7
4
D.[
13
8
,2)
题型:单选题难度:简单| 查看答案
设f(x)是定义在(-∞,+∞)上的奇函数,且在区间(0,+∞)上单调递增,若f(
1
2
)=0
,三角形的内角A满足f(cosA)<0,则A的取值范围是______.
题型:填空题难度:一般| 查看答案
已知y=f(x)的定义域为R,且恒有等式2f(x)+f(-x)+2x=0对任意的实数x成立.
(Ⅰ)试求f(x)的解析式;
(Ⅱ)讨论f(x)在R上的单调性,并用单调性定义予以证明.
题型:解答题难度:一般| 查看答案
对任意实数x、y,定义运算x*y=ax+by+cxy,其中a、b、c为常实数,等号右边的运算是通常意义的加、乘运算.现已知2*1=3,2*3=4,且有一个非零实数m,使得对任意实数x,都有x*m=2x,则m=______.
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.