探究函数f(x)=2x+8x,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:x…0.511.51.71.922.12.22.33457…y…16

探究函数f(x)=2x+8x,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:x…0.511.51.71.922.12.22.33457…y…16

题型:解答题难度:一般来源:不详
探究函数f(x)=2x+
8
x
,x∈(0,+∞)
的最小值,并确定取得最小值时x的值.列表如下:
答案
举一反三
题型:解答题难度:一般| 查看答案
题型:单选题难度:简单| 查看答案
题型:解答题难度:一般| 查看答案
题型:单选题难度:一般| 查看答案
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

x0.511.51.71.922.12.22.33457
y16108.348.18.0188.018.048.088.61011.615.14
(1)∵x>0,∴2x+
8
x
≥2


2x•
8
x
=8
当且仅当x=2时,函数f(x)=2x+
8
x
的最小值为8
由此可得函数在区间(0,2)上递减;在区间(2,+∞)上递增
故答案为:(2,+∞),2,4.…(4分)
(2)证明:设x1,x2是区间(0,2)上的任意两个数,且x1<x2,可得
f(x1)-f(x2)=2x1+
8
x1
-(2x2+
8
x2
)

=2(x1-x2)+
8
x1
-
8
x2
=2(x1-x2)(1-
4
x1x2
)

=
2(x1-x2)(x1x2-4)
x1x2

∵x1<x2且x1,x2∈(0,2),可得x1-x2<0,x1x2-4<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2
由此可得函数在(0,2)上为减函数.(10分)
(3)根据函数在{x|x≠0}上为奇函数,且在(0,+∞)上有最小值4,可得如下结论:
函数y=x+
4
x
,当x<0时,有最大值
当x=-2时,ymax=-4.(12分)
已知a>0且a≠1,f(logax)=
a(x2-1)
x(a2-1)

试判断f(x)在定义域上是否为单调函数?若是,是增函数还是减函数?并证明结论.
函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数,则a的取值范围为(  )
A.0<a≤
1
5
B.0≤a≤
1
5
C.0<a<
1
5
D.a>
1
5
已知函数f(x)=
2
x
-xm,且f(4)=-
7
2

(1)求m的值;
(2)判断f(x)在(0,+∞)上的单调性,并给予证明.
已知函数y=f(x)在R上是增函数,且f(2m+1)>f(3m-4),则m的取值范围是(  )
A.(-∞,5)B.(5,+∞)C.(-5,+∞)D.(-∞,5)
已知函数f(x)=
x 2+ax+a
x
,且a<1.
(1)当x∈[1,+∞)时,判断f(x)的单调性并证明;
(2)在(1)的条件下,若m满足f(3m)>f(5-2m),试确定m的取值范围.
(3)设函数g(x)=x•f(x)+|x2-1|+(k-a)x-a,k为常数.若关于x的方程g(x)=0在(0,2)上有两个解x1,x2,求k的取值范围,并比较
1
x1
+
1
x2
与4的大小.