设函数y=f(x)是定义在R上的函数,并且满足下面三个条件;①对任意正数x,y,都有f(xy)=f(x)+f(y);②当x>1时,f(x)<0;③f(3)=-1

设函数y=f(x)是定义在R上的函数,并且满足下面三个条件;①对任意正数x,y,都有f(xy)=f(x)+f(y);②当x>1时,f(x)<0;③f(3)=-1

题型:解答题难度:一般来源:不详
设函数y=f(x)是定义在R上的函数,并且满足下面三个条件;
①对任意正数x,y,都有f(xy)=f(x)+f(y);
②当x>1时,f(x)<0;
③f(3)=-1.
(Ⅰ)求f(1),f(
1
9
)
的值;
(Ⅱ)证明f(x)在R+是减函数;
(Ⅲ)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.
答案
(Ⅰ)令x=y=1易得f(1)=0,
而f(9)=f(3)+f(3)=-1-1=-2,
f(9)+f(
1
9
)=f(1)=0,得f(
1
9
)=2.

(Ⅱ)取定义域中的任意的x1,x2
0<x1x2
x2
x1
>1 ⇒f(
x2
x1
)<0

f(x2)=f(
x2
x1
x1)=f(
x2
x1
)+f(x1)<f(x1)

∴f(x)在R+上为减函数.
(Ⅲ)由条件(1)及(Ⅰ)的结果得:f[x(2-x)]<f(
1
9
),其中0<x<2

由可(Ⅱ)得:





x(2-x)>
1
9
0<x<2

解得x的范围是(1-
2


2
3
,1+
2


2
3
)
举一反三
己知向量a=(2sin
x
2
,1-


2
cos
x
2
)
,b=(cos
x
2
,1+


2
cos
x
2
)
,函数f(x)=log
1
2
(a•b).
(Ⅰ)求函数f(x)的定义域和值域;
(Ⅱ)求函数f(x)的单调区间.
题型:解答题难度:一般| 查看答案
已知定义在R上的单调函数f(x)满足:存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立,则(i)f(1)+f(0)=______(ii)x0的值为______.
题型:填空题难度:一般| 查看答案
在△ABC中,已知a,b,c是角A,B,C的对应边,①若a>b,则f(x)=(sinA-sinB)•x在R上是增函数; ②若a2-b2=(acosB+bcosA)2,则△ABC是Rt△; ③cosC+sinC的最小值为-


2
; ④若cosA=cosB,则A=B;⑤若(1+tanA)(1+tanB)=2,则A+B=
4
,其中正确命题的序号是______.
题型:填空题难度:一般| 查看答案
已知函数f (x)=
题型:解答题难度:一般| 查看答案
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

|x|
x+2
设f(x)=





2x-2,x≤2
log2(x-1),x>2
,则f(f(5))=______.