对于函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值称为f(x)的“下确界“,则函数f(x)=1-4x+15-4x,x∈(-∞,54)的“下确

对于函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值称为f(x)的“下确界“,则函数f(x)=1-4x+15-4x,x∈(-∞,54)的“下确

题型:填空题难度:一般来源:韶关一模
对于函数f(x),在使f(x)≥M成立的所有常数M中,我们把M的最大值称为f(x)的“下确界“,则函数f(x)=1-4x+
1
5-4x
,x∈(-∞,
5
4
)
的“下确界“等于______.
答案
t=5-4x,则t>0,函数可化为y=t+
1
t
-4
∵t>0,∴t+
1
t
≥2(当且仅当t=1时取等号)
∴y≥2-4=-2
∴f(x)的“下确界”等于-2
故答案为:-2
举一反三
定义在实数集上的函数f(x)满足下列条件:
①f(x)是偶函数;②对任意非负实数x、y,都有f(x+y)=2f(x)f(y);③当x>0时,恒有f(x)>
1
2

(1)求f(0)的值;
(2)证明:f(x)在[0,+∞)上是单调增函数;
(3)若f(3)=2,解关于a的不等式f(a2-2a-9)≤8.
题型:解答题难度:一般| 查看答案
已知f(x)是定义在[-1,1]上的奇函数,若任意的a、b∈[-1,1],且a+b≠0,都有
f(a)+f(b)
a+b
>0

(1)判断f(x)在[-1,1]上的单调性,并证明你的结论;
(2)解不等式:f(x+1)<f(
1
x-1
).
题型:解答题难度:一般| 查看答案
设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-
5
2
)
=______.
题型:填空题难度:简单| 查看答案
已知函数 f(x)=
1
2
x2-2alnx+(a-2)x
,a∈R.
(Ⅰ)当 a=1 时,求函数 f(x) 的最小值;
(Ⅱ)当 a≤0 时,讨论函数 f(x) 的单调性;
(Ⅲ)是否存在实数a,对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>a
,恒成立,若存在求出a的取值范围,若不存在,说明理由.
题型:解答题难度:一般| 查看答案
已知f(
1
2
x-1)=2x+3,f(m)=6,则m=______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.