证明:设0<x1<x2,则有f(x1)-f(x2)=(x1+)-(x2+)=(x1-x2)+(-)=(x1-x2) (1)当0<x1<x2<1时,x1x2<1,即,x1x2-1<0,又∵x1x2>0,x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数在(0,+∞)上为减函数. (2)当1<x1<x2时,x1x2>1,即,x1x2-1>0,又∵x1x2>0,x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数在(0,+∞)上为增函数. 综上所述,f(x)=x+在(0,1)上单调递减,在[1,+∞)上单调递增. |