已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立.(1)求实数a的值;(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上

已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立.(1)求实数a的值;(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上

题型:解答题难度:一般来源:不详
已知函数f(x)=x2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立.
(1)求实数a的值;
(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.
答案
(1)由f(1+x)=f(1-x)得,
(1+x)2+a(1+x)=(1-x)2+a(1-x),
整理得:(a+2)x=0,
由于对任意的x都成立,∴a=-2.
(2)根据(1)可知f(x)=x2-2x,下面证明函数f(x)在区间[1,+∞)上是增函数.
设x1>x2≥1,则f(x1)-f(x2)=(x12-2x1)-(x22-2x2
=(x12-x22)-2(x1-x2
=(x1-x2)(x1+x2-2)
∵x1>x2≥1,则x1-x2>0,且x1+x2-2>2-2=0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
故函数f(x)在区间[1,+∞)上是增函数.
举一反三
已知函数f(x)=x2-2x-3.
(1)画出函数y=f(x)的图象;
(2)写出函数y=f(x)的单调区间(不必证明);
(3)当x∈[-1,2]时,求函数y=f(x)的最大值和最小值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=
2
x-1
(x∈[2,6])
,求函数的最大值和最小值.
题型:解答题难度:一般| 查看答案
若函数f(x)=
x+3a
x+2
在区间(a,+∞)上是增函数,则实数a的取值范围是______.
题型:填空题难度:一般| 查看答案
设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,求解不等式f(x)+f(x-2)>1.
题型:解答题难度:一般| 查看答案
对于函数f(x)=a-
2
2x+1
(a∈R)

(Ⅰ) 是否存在实数a使函数f(x)为奇函数?
(Ⅱ) 探究函数f(x)的单调性(不用证明),并求出函数f(x)的值域.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.