设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0,则不等式f(x)g(x)<0的解集
题型:单选题难度:一般来源:湖南省高考真题
设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(3)=0,则不等式f(x)g(x)<0的解集是 |
[ ] |
A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3) C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3) |
答案
D |
举一反三
设f(x)、g(x)都是单调函数,有如下四个命题中,正确的命题是 ①若f(x)单调递增,g(x)单调递增,则f(x)-g(x)单调递增; ②若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递增; ③若f(x)单调递减,g(x)单调递增,则f(x)-g(x)单调递减; ④若f(x)单调递减,g(x)单调递减,则f(x)-g(x)单调递减; |
[ ] |
A.①③ B.①④ C.②③ D.②④ |
设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm空白,左、右各留5cm空白.怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?如果要求λ∈,那么λ为何值时,能使宣传画所用纸张面积最小? |
如图所示,f1(x),f2(x),f3(x),f4(x)是定义在[0,1]上的四个函数,其中满足性质:“对 [0,1]中任意的x1和x2,恒成立”的只有 |
|
[ ] |
A.f1(x),f3(x) B.f2(x) C.f2(x),f3(x) D.f4(x) |
如图所示,fi(x)(i=1,2,3,4)是定义在[0,1]上的四个函数,其中满足性质:“对[0,1]中任意的x1和x2,任意λ∈[0,1],f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2)恒成立”的只有 |
|
[ ] |
A. B. C. D. |
设函数(x∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有 |
[ ] |
A.0个 B.1个 C.2个 D.无数多个 |
最新试题
热门考点