已知函数f(x)=lnx+1x-1(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],f(x)=lnx+1x-1>lnm(x-1

已知函数f(x)=lnx+1x-1(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],f(x)=lnx+1x-1>lnm(x-1

题型:解答题难度:一般来源:不详
已知函数f(x)=ln
x+1
x-1

(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求实数m取值范围.
答案
(1)由
x+1
x-1
>0
,解得x<-1或x>1,∴定义域为(-∞,-1)∪(1,+∞)(2分)
当x∈(-∞,-1)∪(1,+∞)时,f(-x)=ln
-x+1
-x-1
=ln
x-1
x+1
=ln(
x+1
x-1
)-1=-ln
x+1
x-1
=-f(x)

f(x)=ln
x+1
x-1
是奇函数.….(5分)
(2)由x∈[2,6]时,f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,
x+1
x-1
m
(x-1)(7-x)
>0

∵x∈[2,6],∴0<m<(x+1)(7-x)在x∈[2,6]成立…(8分)
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],
由二次函数的性质可知x∈[2,3]时函数单调递增,x∈[3,6]时函数单调递减,
∴x∈[2,6]时,g(x)min=g(6)=7
∴0<m<7….(12分)
举一反三
已知函数f(x)=x2-2ax-(2a+2)
(Ⅰ)解关于x的不等式f(x)>x;
(Ⅱ)若f(x)+3≥0在区间(-1,+∞)上恒成立,求实数a的取值范围.
题型:解答题难度:一般| 查看答案
定义在R上的奇函数f(x)满足:f(x+1)=f(x-1),且当0≤x≤1时,f(x)=-8x2+8x,则f(-
2013
2
)
=(  )
A.2B.-1C.-2D.1
题型:单选题难度:简单| 查看答案
已知f(x)是偶函数,f(x)在(-∞,0)上是增函数,且f(2a2-3a+2)<f(a2-5a+9),现知适合条件的a的集合是不等式2a2+(m-4)a+n-m+3>0的解集,求m和n的值.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+(lga-2)x+lgb满足f(1)=0,
(1)求a+b的最小值及此时a与b的值;
(2)对于任意x∈R,恒有f(x)≥2x-6成立.求a的取值范围.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+bx+c(b,c∈R),若b、c满足c≥
b2
4
+1
,且f(c)-f(b)≤M(c2-b2)恒成立,则M的最小值为______.
题型:填空题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.