已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为______.
题型:填空题难度:简单来源:东城区模拟
已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为______. |
答案
∵函数f(x)=x2+(ab-a-4b)x+ab是偶函数 ∴函数的对称轴x=-=0 ∴ab-a-4b=0 ∴a+4b=ab,a>0,b>0 由基本不等式可得,ab=a+4b≥2(当且仅当a=4b时取等号) ∴ab-4≥0 ∴ab≥16 ∵f(x)=x2+ab 令x=0可得交点的纵坐标y=ab≥16,即交点的纵坐标的最小值为16 故答案为:16 |
举一反三
已知函数f(x2-1)=logm(m>0,m≠1). (1)试判断f(x)的奇偶性; (2)解关于x的方程f(x)=logm. |
设a>0,若关于x的不等式x+≥5在x∈(1,+∞)恒成立,则a的最小值为( ) |
给定函数f(x)=. (1)求f-1(x); (2)判断f-1(x)的奇偶性,并证明你的结论. |
已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x,则f(-4)的值是______. |
若lg a+lg b=0,则函数f=ax与g=-bx的图象关于( )A.x轴对称 | B.y轴对称 | C.直线y=x对称 | D.原点对称 |
|
最新试题
热门考点