已知奇函数f(x)定义域R,且f(x)在[0,+∞)为增函数,是否存在m∈R,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对[0,π2]恒成立,若

已知奇函数f(x)定义域R,且f(x)在[0,+∞)为增函数,是否存在m∈R,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对[0,π2]恒成立,若

题型:解答题难度:一般来源:不详
已知奇函数f(x)定义域R,且f(x)在[0,+∞)为增函数,是否存在m∈R,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对[0,
π
2
]恒成立,若存在,求m的范围.
答案
由题意知,奇函数f(x)在R上是增函数,f(cos2θ-3)+f(4m-2mcosθ)>f(0)可f(cos2θ-3)>f(-4m+2mcosθ),即cos2θ-3>-4m+2mcosθ,
即cos2θ-3>m(2cosθ-4),由于2cosθ-4<0,故得m>
cos2θ-3
2cosθ-4
=
cos 2θ-2
cosθ-2
=4+cosθ-2+
2
cosθ-2
,由于4+cosθ-2+
2
cosθ-2
≤4-2


2
,所以m>4-2


2

即存在m>4-2


2
使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对[0,
π
2
]恒成立,
答:存在存在m∈R,使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对[0,
π
2
]恒成立,m的范围是m>4-2


2
举一反三
已知f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+2lnx,(a<0,a∈R)
(1)求f(x)的解析式;
(2)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由.
题型:解答题难度:一般| 查看答案
已知函数f(x)=x2+
a
x
(x≠0,常数a∈R)
.讨论函数f(x)的奇偶性,并说明理由.
题型:解答题难度:一般| 查看答案
当x∈(1,2)时,不等式(x-1)2<logax恒成立,则a的取值范围是(  )
A.[2,+∞)B.(1,2]C.[
1
2
,1)
D.(0,
1
2
]
题型:单选题难度:一般| 查看答案
有下列命题:①函数y=f(x+1)是偶函数,则函数y=f(x)的对称轴方程为x=-1;②f(x)=


1-x2
+


x2-1
既是奇函数,又是偶函数;③奇函数的图象必过原点;④已知函数f(x)=x2+bx+c对于任意实数t都有f(2+t)=f(2-t),则f(4),f(2),f(-2)由小到大的顺序为f(4)<f(2)<f(-2).其中正确的序号为______.
题型:填空题难度:一般| 查看答案
f(x)=log
1
2
1-ax
x-1
为奇函数,a为常数.
(1)求a的值;
(2)若对于区间[3,4]上的每一个x值,不等式f(x)>(
1
2
)x+m
恒成立,求实数m取值范围.
题型:解答题难度:一般| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.