已知五个函数:①y=1x;②y=2x+1;③y=(x-1)2;④f(x)=(x)2;⑤y=1(x∈R).其中奇函数的个数为 ______.

已知五个函数:①y=1x;②y=2x+1;③y=(x-1)2;④f(x)=(x)2;⑤y=1(x∈R).其中奇函数的个数为 ______.

题型:填空题难度:一般来源:不详
已知五个函数:①y=
1
x
;②y=2x+1;③y=(x-1)2;④f(x)=(


x
2;⑤y=1(x∈R).其中奇函数的个数为 ______.
答案
①y=
1
x
的定义域关于原点对称,而且有f(-x)=-f(x)=-
1
x
所以它是奇函数;
对于②y=2x+1,其定义域是R,显然f(-0)=1≠-f(0)且f(-1)=-1≠f(1)=3,所以它是非奇非偶函数;
③y=(x-1)2的定义域是R但是可验证有f(-x)≠f(x)且f(-x)≠-f(x)所以它也是非奇非偶函数,
④f(x)=(


x
2;定义域是[0,+∞),所以是非奇非偶函数,
⑤y=1(x∈R)是非零常函数,是偶函数.
因此答案是:1.
举一反三
函数y=f(x)是定义在R上的增函数,函数y=f(x)的图象关于点(0,0)对称.若实数x,y满足不等式f(x2-6x)+f(y2-8y+24)<0,则x2+y2的取值范围是______.
题型:填空题难度:简单| 查看答案
判断下列函数的奇偶性
(1)f(x)=a  (a∈R)
(2)f(x)=(1+x)3-3(1+x2)+2
(3)f(x)=





x(1-x),x<0
x(1+x),x>0
题型:解答题难度:一般| 查看答案
已知f(x)=ax2+bx+3a是定义在(b-1,3b-2)上的奇函数,则a+b=______.
题型:填空题难度:一般| 查看答案
函数y=f(x)是定义域为R的奇函数,且对任意的x∈R,都有f(x+4)=f(x)成立,当x∈(0,2]时,f(x)=-x2+1.
(Ⅰ)当x∈[4k-2,4k+2](k∈Z)时,求函数f(x)的解析式;
(Ⅱ)求不等式f(x)>-1的解集.
题型:解答题难度:一般| 查看答案
设函数f(x)=|x+2|+|x-a|的图象关于直线x=2对称,则a的值为______.
题型:填空题难度:简单| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.