存在符合条件的二次函数. 设f(x)=ax2+bx+c,则当k=1,2,3时有: f(5)=25a+5b+c=55 ①; f(55)=3025a+55a+c=5555②; f(555)=308025a+555b+c=555555③. 联立①、②、③,解得a=,b=2,c=0. 于是,f(x)=x2+2x. 下面证明二次函数f(x)=x2+2x符合条件. 因为=5(1+10+100++10k-1)=(10k-1), 同理:=(102k-1); =f((10k-1))=[(10k-1)]2+2×(10k-1) =(10k-1)2+2×(10k-1)=(10k-1)(10k+1)=(102k-1)= ∴所求的二次函数 f(x)=x2+2x符合条件. |